470 research outputs found

    Transforming Bell's Inequalities into State Classifiers with Machine Learning

    Full text link
    Quantum information science has profoundly changed the ways we understand, store, and process information. A major challenge in this field is to look for an efficient means for classifying quantum state. For instance, one may want to determine if a given quantum state is entangled or not. However, the process of a complete characterization of quantum states, known as quantum state tomography, is a resource-consuming operation in general. An attractive proposal would be the use of Bell's inequalities as an entanglement witness, where only partial information of the quantum state is needed. The problem is that entanglement is necessary but not sufficient for violating Bell's inequalities, making it an unreliable state classifier. Here we aim at solving this problem by the methods of machine learning. More precisely, given a family of quantum states, we randomly picked a subset of it to construct a quantum-state classifier, accepting only partial information of each quantum state. Our results indicated that these transformed Bell-type inequalities can perform significantly better than the original Bell's inequalities in classifying entangled states. We further extended our analysis to three-qubit and four-qubit systems, performing classification of quantum states into multiple species. These results demonstrate how the tools in machine learning can be applied to solving problems in quantum information science

    A convex analysis based criterion for blind separation of non-negative sources

    Get PDF
    [[abstract]]In this paper, we apply convex analysis to the problem of blind source separation (BSS) of non-negative signals. Under realistic assumptions applicable to many real-world problems such as multichannel biomedical imaging, we formulate a new BSS criterion that does not require statistical source independence, a fundamental assumption to many existing BSS approaches. The new criterion guarantees perfect separation (in the absence of noise), by constructing a convex set from the observations and then finding the extreme points of the convex set. Some experimental results are provided to demonstrate the efficacy of the proposed method. © 2007 IEEE.[[fileno]]2030157030001[[department]]電機工程學

    A Convex Analysis Framework for Blind Separation of Non-Negative Sources

    Full text link

    Virus-Host Mucosal Interactions During Early SIV Rectal Transmission

    Get PDF
    To deepen our understanding of early rectal transmission of HIV-1, we studied virus-host interactions in the rectal mucosa using simian immunodeficiency virus (SIV)-Indian rhesus macaque model and mRNA deep sequencing. We found that rectal mucosa actively responded to SIV as early as 3 days post-rectal inoculation (dpi) and mobilized more robust responses at 6 and 10 dpi. Our results suggests that the failure of the host to contain virus replication at the portal of entry is attributable to both a high-level expression of lymphocyte chemoattractant, proinflammatory and immune activation genes, which can recruit and activate viral susceptible target cells into mucosa; and a high-level expression of SIV accessory genes, which are known to be able to counter and evade host restriction factors and innate immune responses. This study provides new insights into the mechanism of rectal transmission

    Observation of the decay \psip\rar\kstark

    Full text link
    Using 14 million ψ(2S)\psi(2S) events collected with the BESII detector, branching fractions of \psip\rar\kstarkpm and \kstarknn are determined to be: \calB(\psip\rar\kstarkpm)=(2.9^{+1.3}_{-1.7}\pm0.4)\times 10^{-5} and \calB(\psip\rar\kstarknn)=(13.3^{+2.4}_{-2.7}\pm1.9)\times 10^{-5}. The results confirm the violation of the "12%" rule for these two decay channels with higher precision. A large isospin violation between the charged and neutral modes is observed.Comment: 5 pages, 3 figure

    The DArk Matter Particle Explorer mission

    Get PDF
    The DArk Matter Particle Explorer (DAMPE), one of the four scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Sciences, is a general purpose high energy cosmic-ray and gamma-ray observatory, which was successfully launched on December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE scientific objectives include the study of galactic cosmic rays up to ∼10\sim 10 TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the search for dark matter signatures in their spectra. In this paper we illustrate the layout of the DAMPE instrument, and discuss the results of beam tests and calibrations performed on ground. Finally we present the expected performance in space and give an overview of the mission key scientific goals.Comment: 45 pages, including 29 figures and 6 tables. Published in Astropart. Phy
    • …
    corecore