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ABSTRACT
In this paper, we apply convex analysis to the problem of blind
source separation (BSS) of non-negative signals. Under realistic
assumptions applicable to many real-world problems such as mul-
tichannel biomedical imaging, we formulate a new BSS criterion
that does not require statistical source independence, a fundamen-
tal assumption to many existing BSS approaches. The new criterion
guarantees perfect separation (in the absence of noise), by construct-
ing a convex set from the observations and then finding the extreme
points of the convex set. Some experimental results are provided to
demonstrate the efficacy of the proposed method.

Index Terms- Blind separation, Non-negative sources, Convex
analysis

1. INTRODUCTION

The problem of independent component analysis (ICA) or blind
source separation (BSS) has received wide attention in various fields
such as biomedical signal analysis, speech enhancement, wireless
communications and image processing [1] [2]. Most existing ICA
or BSS algorithms were developed under certain assumptions on the
sources; e.g., that the sources are statistically independent and non-
Gaussian. For instance, the fast fixed-point algorithm (also called the
FastICA) [1] is based on the assumption that the sources are mutually
independent with non-zero kurtosis (a fourth-order cumulant). The
non-negative ICA (nICA) [3] is based on the assumption that sources
are non-negative and mutually uncorrelated. However, this funda-
mental assumption, source independence, becomes problematic in
many real world applications, such as biomedical imaging [4] and
hyperspectral imaging [5] where sources can be correlated. Thus,
many researchers exploit the non-negativity of both the sources and
mixing matrix to develop their BSS algorithms. The non-negative
matrix factorization (NMF) [6] can be used to decompose the obser-
vation matrix as a product of two non-negative matrices (represent-
ing the source matrix and mixing matrix). However, the solutions
to the NMF may be non-unique. Moreover, a method proposed by
Wang et al. [7] [8], called the non-negative least-correlated compo-
nent analysis (nLCA), extracts original (independent or correlated)
sources by minimizing the correlation coefficient between two esti-
mated sources.

This paper presents a convex analysis approach to BSS of non-
negative sources that are allowed to be dependent. The main contri-
bution is formulation of a new BSS criterion, which can guarantee
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perfect separation in the absence ofnoise under several mild assump-
tions that usually hold in biomedical imaging applications. A BSS
method based on the new criterion will also be discussed.

2. SYSTEM MODEL

Consider anM x N mixing system with inputs and outputs denoted
by s[n] = [ sl[n],... 7sN[n] ]T andx[n] = [xl[n],...,xM[n] ]T
respectively. Assume that the noise is absent. Then the mixing signal
model is given by

x[n] = As[n], n= 1,...,L (1)
where A is the mixing matrix which is unknown, and L is the data
length and L » max{M, N}. Our BSS approach to be presented
is based on the following assumptions which are motivated by mag-
netic resonance imaging (MRI) applications:

(Al) (Non-negative source signals) For all n, s[n] C R4N where
R+ is the set of non-negative real numbers.

(A2) For each source index i c {l, ... ,N}, there exists a time
index?i suchthat si[fi] > 0and sj] O0, Vj # i.

(A3) (Unit row sum) For all i = 1, ... I M,

N

Zaij = I
J1

(2)

where aij denotes the (i, j) entry of A.

(A4) M > N and A is of full column rank.

(A5) (Non-negative mixing matrix) A C RmI N

(Al) and (A5) are generally true in biomedical imaging [3]
where image intensities and the mixing process are represented by
non-negative numbers. (A2) usually holds for sparse signals such as
brain MRI in biomedical imaging, where the non-overlapping region
of the spatial distribution of a fast perfusion and a slow perfusion
source images [4] can be higher than 95%, thereby making (A2) an
advisable assumption. (A3) can be achieved by a straightforward
preprocessing [8], and it is automatically satisfied in MRI due to the
partial volume effect [8]. (A4) is an assumption widely made in the
BSS problem.

For notational convenience, we will focus on the following al-
ternate signal model. Let si [ sil], ... ,si[L] ]T and xi
[ xi[1],. ..,xi[L] ]T. The model in (1) can be rewritten as

N

Xi Z,asj, i
J1l

(3)
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3. NEW BSS CRITERION BY CONVEX ANALYSIS

In this section, we first review some convex analysis concepts essen-
tial to this work, and then present our main results.

3.1. Some Basic Concepts of Convex Analysis

We review two convex analysis concepts [9], [10] that will play an
important role to the ensuing development. The first is the affine hull
of a set of vectors {sl, . . ., SN} C RL, defined as

aff{sl,.. ., SN}
N N

x = LOisi 0 NR oi
i=l i=l

1 .

(4)

3.2. Signal Affine Hull Characterization
With the aforedescribed convex analysis concepts, we see from the
signal formulation in (3) and (A3) that

xi C aff{s1, . . ., SN} (8)

for all i = 1, ... , M. This leads to an interesting question whether
the observations x 1, ... , xm provide sufficient information to deter-
mine the source signal affine hull aff{s1, ... ., SN}. This is indeed
possible, as described in the following lemma:

Lemma 1. Suppose that (A3) and (A4) hold. Then,

aff{s1, ...,SN} = aff{x1,...,xM}. (9)

For N = 2, the affine hull is a line passing through s1 and S2; see
Fig. 1(a). The affine hull can always be represented by an affine set:

aff{sl,.. ,SN}= {X Cao+d a CR'}

for some (non-unique) d C RL and C C RL X P. Here, C is assumed
to be of full column rank and P represents the dimension of the
affine set which must be less than N. For example, if {Sl, . . ., SN}
is a linearly independent set, then P = N -1. In that case, a
legitimate (C, d) can simply be obtained by C = [ Sl-SN, S2-
SN, .. ., SN1 -SN ] and d =SN. In the ensuing subsections we
will be faced withthe problem of finding (C, d) from {s1, ... , SN}
for P < N -1.

The second key concept is that of the convex hull of a set of
vectors .,... ., SNv } RpL, defined as

conv{s1,... , SN} {x=YOj o{CR ,7 EOi =1

(6)
ForN = 2, the convex hull is a line segment between s1 and S2; see
Fig. l(a). Geometrically Si, . . , SN would be the 'corner points'
of its convex hull, defined formally as the extreme points. A point
x C conv{S1, . . ., SN} is an extreme point of conv{s1, . . ., SN}
if it cannot be a nontrivial convex combination of s1, . . ., SN; i.e.,

N

X 7 Oisi
i=l

(7)

for all 0 C IR+ , Ei=1 i = 1, and 0 7 ei foranyi(wheree
is the unit vector with the ith entry being equal to 1). The set of
extreme points of conv{s1, ... , SN} must be either the full set or
a subset of {sl,. .. ., Sy}. In addition, if {Sl, ... ., Sy} is a linearly
independent set, then the set ofextreme points ofconv{ss, ... , SN }
is exactly {sl,... SN}.

The proof of Lemma 1 is omitted due to the page limit. Fig. l(b)
demonstrates geometrically the validity ofLemma 1. We will show
later that given knowledge of aff{sl.,.. .},SN, it is possible to per-
fectly recover all Si, . . ., SN. Now let us focus on characteriza-
tion of aff{s1, . .. , SN}. It can easily be shown from (A2) that
{ S1, .. ., SN} is linearly independent. Hence, aff{si, ... , SN} has
dimension N -1 and admits a representation

aff{si, . SN} { = Ca + d a C R } - (C, d)
(10)

for some (C, d) C RRL (N-1) x RL such that rank(C) = N -1.
Note that (C, d) is non-unique. Without loss of generality, we can
restrict C to a semi-unitary matrix, i.e., CTC = I.

It is easy to obtain (C, d) from the observations 1, ..., xM if
M = N; see the example mentioned in Section 3.1. The nontrivial
case lies inM > N, for which a method, referred to as the affine set
fitting, is proposed next.

Consider the following projection problem

M

min t -.A(C,d(xi)|2
CTCCI

(1 1)

where 11.112 denotes the 2-norm; and PA (X) stands for the projection
of x onto the set A, defined as

'PA(X) = arg min II x 2LiEA
(12)

The idea behind is to find an (N -1)-dimensional affine set that has
the minimum projection error with respect to the observations. At
first glance, (11) is a nonconvex optimization problem, but in fact it
can be solved analytically as stated in the following proposition:

Proposition 1. The affine set fitting problem in (1]) has a closed
form solution

aff{s, s, } = aff{x, x2,x3}

s,2 _ conv{sl, S2 }

L' X2--- S
° Si

(b)
Fig. 1. Example of 2-dimensional signal space geometry for N = 2.

d= MY i
i=i

C =[q (UUT) q2 (UUT) qN (UUT) ]

(13)

(14)

where U= [ xi -d,...,x m-d] C RLIm, and qi(R) denotes
the eigenvector associated with the ith principal eigenvalue ofR.

The proof of Proposition 1 is given in Section 7. We should add
that the affine set fitting solution in Proposition 1 works for M =

N as well. Moreover, in the presence of noise the affine set fitting
would serve as a favorable way for noise reduction, since it provides
a best affine set that achieves the minimum data fitting error.
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3.3. Signal Convex Hull, Extreme Points, and Perfect Blind Sep-
aration
Recall that we are dealing with non-negative source signals. Hence,

si C aff{S1,.**,SN}InR+ =S (15)

for any i. Now, we can show that

Lemma 2. Suppose that (Al) and (A2) hold. Then,

S = conv{sl, .. . , SN} (16)

and the set ofall its extreme points is {S1, ... ., SN}.

The proof of Lemma 2 is given in Section 7. Lemma 2 gives the
important implication that perfect blind separation can be done by
identifying the extreme points of the signal convex set S.

Given the observations, we only know from (10) and (15) that S
is of the form

S = { x = Ca + d a C RN n RL
{x Ca+od Ca+d O, a C N-1 } (17)

for some C and d estimated from the observations (see Proposition
1), and >- is the elementwise inequality. Let I' be the image of S
under the mapping from x to a, i.e.,

SF {X C RN-1 Ca + d >-O }

{eCRN- 1 c'a + d > , n (18)

where cT is the nth row of C. We prove the correspondence between
the extreme points ofS and I' in the following lemma:

Lemma 3. The set nf given by (18) is equivalent to

nF = conveCl , . . . , CXN } (l19)

where each ai C RN-1 is such that Cai + d = si. It has N
extreme points, given by a 1,...., ON.

The proof of Lemma 3 is given in Section 7. More importantly, in
convex analysis there is a powerful result that can help us identify
the extreme points of F:

Lemma 4. (Extreme point validation for polyhedra [10]) A
point a C f is an extreme point of°f ifand only if the following
collection ofvectors

4. BSS METHOD BASED ON THE NEW CRITERION

Based on the BSS criterion in Theorem 1, a BSS method which
works by identifying the extreme points of f is proposed in this sec-
tion. Let us focus on the case ofN = 2 and the case ofN = 3, re-
spectively. By (Al) to (A5), one can see that d = x /M - 0.

Case A: N = 2. It can be shown that there is a closed form solution

a1 = min{ -d,Ic,l c,, < 0, n = 1, 2, ..., LI,
(2 max{ -d/cnl cn > 0, n = 1, 2, ..., LI.

Case B: N = 3. In Fig. 2, we can see that there are three faces
forming the boundary of f, and that identifying any 2 faces will be
sufficient to determine one extreme point. An extreme point search
algorithm is then as follows.

Step 1. Given an arbitrary vector ri C 1R2 and setting r2 =-ri,
find the indices associated with two of the faces by

ki arg min{ -d/cl Tri cTri < 0, n = 1, ..., L}
(22)

for i 1, 2.

Step 2. Obtain the first extreme point

o~ Tj-1 [d C R

[Ck2_ [dk2-

Step 3. Set r3 =- ,. Find the third face by (22) for i 3.

Step 4. Obtain the other two extreme points

Ck2 dk2 Ckl dkl
[cT J [3j LcT. J dk3]

Face 1
{ a cTac + dk

\--

(:X3/ Face 3
Xta cTa+d{ci\c+d33

sr rs 4--
o }

a1

Face 2
t a cT2 + dk2 o }

Fig. 2. A geometry of finding extreme points for N = 3.
-d n 1,n , L} (20)

contains N -1 linearly independent vectors.

Summarizing the results developed above, we have the follow-
ing new blind separation criterion for non-negative sources:

Theorem 1. (New BSS criterion) Suppose that (Al) to (A4) hold.
The set

f {acCRN-1 ICa+d -0} (21)

where (C, d) are obtained from the observations x1, , xm via
the affine setfitting solution in Proposition 1, has N extreme points
a , * * *, a N. Each extreme point corresponds to a source signal
through Coi + d = si. The extreme points ofF can be identifed
by using the validation procedure in Lemma 4.

5. EXPERIMENTS

In this experiment, we perform fifty independent runs (i.e., use fixed
sources to generate the mixtures with random mixing matrices) with
the proposed method and three existing algorithms, nLCA [8], nICA
[3], and NMF [6] for performance comparison. Assume that sj is
the estimated source of sj (with permutation ambiguity artificially
removed). The mean-removed correlation coefficient between the
true sources sj and the extracted sources sj defined as [8]

1
N

(S ST1)T(sj s1)l
N 1E s - I8 l 112 || j S1 112

was calculated at each independent run as a performance index
where denotes a column vector with all the entries equal to unity.
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Note that 0 < p < 1 and the larger p, the better the performance
of the algorithm under test. Three correlated human face image
sources (N = 3) taken from the benchmarks in [2] were used
to generate three noise-free observations and fifteen noisy observa-
tions. Note that we add zero-mean Gaussian noise with variance
a2 to produce noisy observations with the same signal-to-noise ra-
tio (SNR=SNRi=25dB) where SNRi = 11 2/LU2. To maintain
non-negativity of the observations in the simulation, we force the
negative noisy observations to zero. The averaged values of p over
the performed fifty independent runs are displayed in Table 1. From
this table, one can see that proposed method performs better than the
other three existing algorithms (i.e., maximum averaged p).

Method Proposed nLCA nICA NMF
(N = 3) Method
SNR-oo 0.9872 0.9811 0.7519 0.7406

SNR=25dB 0.9336 0.9116 0.7311 0.715315

Table 1. The performance (averaged mean-removed correlation co-
efficient p) of the proposed method, nLCA, nICA and NMF for the
human face image simulation.

6. CONCLUSIONS AND FUTURE WORKS

We have developed a new blind separation criterion for non-negative
sources by a convex analysis approach. This approach is determinis-
tic and geometry-based, requiring no source independence assump-
tion. Based on the new criterion (Theorem 1), a BSS method (for
N = 2 and N = 3) has been proposed. Some experimental results
reveal that the proposed BSS method outperforms nLCA, nICA, and
NMF. As future directions, we shall consider extension to the case
ofN > 3 and investigate relaxations ofthe assumptions made in the
paper.

7. APPENDIX

Proof of Proposition 1. From (12), it can be shown that

A(C,d) (xiJ) = arg min xx 2 =P + P±d (23)
6, ERN-1

where PE CCT and P± I -PE. By substituting (23) into
(11), the problem becomes

M

min E P±( - d)2 A min J(C,d). (24)
CdC=IT C,d

Fixing C, mind J(C, d) is a convex optimization problem. By solv-
ing VdJ(C, d) = 0 for d with a given C, we obtain an optimal
solution d given by (13). By substituting (13) into (24), the problem
is reduced to

M

max - 112
i=1

max Trace{C UUTC}.
CTCCI

which is the problem of finding the N -1 principal eigenvalues of
UUT . Hence, we obtain an optimum solution C given by (14).

Proof ofLemma 2. Assume that z C aff{s 1, ..., SNy} n RL:
N

Z = E OiSi O, TO = 1.

i=l

From (A2), it follows that z[fi] = Oisi [ti] > 0, Vi. Since si[4i] >
0, we must have Oi > 0, Vi. Therefore, z lies in conv{Si, ..., SN}.
On the other hand, assume that z C conv{S1, ..., SN}, i.e.,

N

z Eoisis O, 1T0 = 1, 0 O>
i=l

implying that z C aff{si, ..., SN}. From (A1 ), we have si 0 Vi
and subsequently z >- 0. This completes the proof for (16). More-
over, the fact that S1, ..., SN are linearly independent (according to
(A2)) implies that {s1, ..., SN} is the set of all the extreme points of
conv{s1, ..., SN} (cf., Sec. 3.1).

Proof of Lemma 3. Equation (18) can also be expressed as

T {= IRN-1 Ca + d C conv{sl, --, SN} }

Thus, every a C nf satisfies

N

Ca + d = OOisi.
i=l

(25)

for some 0 - 0, OT1 = 1. Now, due to the one-to-one mapping
Si = Cai + d C S (between S and F), one can infer that (25) is
equivalent to

N

a =iiai, o 1 = I, o F O

i=l

(26)

meaning that nF = conv{Ea, . N},aXN. Now, suppose that a1 is not
an extreme point, i.e., a, 1E ai, 0 7 el. Then one can
easily show that si = Ca, + d =z 1 Oisi, 0 7& el, i.e., si
is not an extreme point (contradiction). So, all ai must be extreme
points of F.
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