783 research outputs found
Rip/singularity free cosmology models with bulk viscosity
In this paper we present two concrete models of non-perfect fluid with bulk
viscosity to interpret the observed cosmic accelerating expansion phenomena,
avoiding the introduction of exotic dark energy. The first model we inspect has
a viscosity of the form by
taking into account of the decelerating parameter q, and the other model is of
the form . We give out the
exact solutions of such models and further constrain them with the latest
Union2 data as well as the currently observed Hubble-parameter dataset (OHD),
then we discuss the fate of universe evolution in these models, which confronts
neither future singularity nor little/pseudo rip. From the resulting curves by
best fittings we find a much more flexible evolution processing due to the
presence of viscosity while being consistent with the observational data in the
region of data fitting. With the bulk viscosity considered, a more realistic
universe scenario is characterized comparable with the {\Lambda}CDM model but
without introducing the mysterious dark energy.Comment: 9 pages, 6 figures, submitted to EPJ-
Three-Particle Correlations from Parton Cascades in Au+Au Collisions
We present a study of three-particle correlations among a trigger particle
and two associated particles in Au + Au collisions at = 200 GeV
using a multi-phase transport model (AMPT) with both partonic and hadronic
interactions. We found that three-particle correlation densities in different
angular directions with respect to the triggered particle (`center', `cone',
`deflected', `near' and `near-away') increase with the number of participants.
The ratio of `deflected' to `cone' density approaches to 1.0 with the
increasing of number of participants, which indicates that partonic Mach-like
shock waves can be produced by strong parton cascades in central Au+Au
collisions.Comment: 9 pages, 6 figures; Final version to appear in Physics Letters
Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes
A wide field of view Cherenkov/fluorescence telescope array is one of the
main components of the Large High Altitude Air Shower Observatory project. To
serve as Cherenkov and fluorescence detectors, a flexible and mobile design is
adopted for easy reconfiguring of the telescope array. Two prototype telescopes
have been constructed and successfully run at the site of the ARGO-YBJ
experiment in Tibet. The features and performance of the telescopes are
presented
Structure-properties relationships in solution-processable single-material molecular emitters for efficient green organic light-emitting diodes
The electroluminescent properties of a series of solution-processable fluorescent molecular emitters have been systematically investigated. While the introduction of the electron-deficient benzothiadiazole unit in the structure confers efficient electron-injection on the emitter materials, they exhibit different hole-transport properties. The device characteristics of the OLEDs based on these various emitters are discussed on the basis of (i) the energy levels of their HOMO and LUMO and (ii) their hole-transport properties in relation with the charge-transport and blocking properties of the electron- and hole-transport layers. (C) 2012 Elsevier B.V. All rights reserved
The newly observed open-charm states in quark model
Comparing the measured properties of the newly observed open-charm states
D(2550), D(2600), D(2750), D(2760), D_{s1}(2710), D_{sJ}(2860), and
D_{sJ}(3040) with our predicted spectroscopy and strong decays in a constituent
quark model, we find that: (1) the D(2\,^1S_0) assignment to D(2550) remains
open for its too broad width determined by experiment; (2) the D(2600) and
can be identified as the 2\,^3S_1-1\,^3D_1 mixtures; (3) if
the D(2760) and D(2750) are indeed the same resonance, they would be the
D(1\,^3D_3); otherwise, they could be assigned as the D(1\,^3D_3) and
, respectively; (4) the could be either the
's partner or the D_s(1\,^3D_3); and (5) both the
and interpretations for the seem likely. The
and radiative decays of these sates are also studied. Further
experimental efforts are needed to test the present quarkonium assignments for
these new open-charm states.Comment: 26 pages,7 figures, journal versio
Recognizing basal cell carcinoma on smartphoneâcaptured digital histopathology images with a deep neural network
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154530/1/bjd18026.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154530/2/bjd18026_am.pd
Di-hadron azimuthal correlation and Mach-like cone structure in parton/hadron transport model
In the framework of a multi-phase transport model (AMPT) with both partonic
and hadronic interactions, azimuthal correlations between trigger particles and
associated scattering particles have been studied by the mixing-event
technique. The momentum ranges of these particles are
GeV/ and GeV/ (soft), or 4
GeV/ and GeV/ (hard) in Au + Au collisions at
= 200 GeV. A Mach-like structure has been observed in
correlation functions for central collisions. By comparing scenarios with and
without parton cascade and hadronic rescattering, we show that both partonic
and hadronic dynamical mechanisms contribute to the Mach-like structure of the
associated particle azimuthal correlations. The contribution of hadronic
dynamical process can not be ignored in the emergence of Mach-like correlations
of the soft scattered associated hadrons. However, hadronic rescattering alone
cannot reproduce experimental amplitude of Mach-like cone on away-side, and the
parton cascade process is essential to describe experimental amplitude of
Mach-like cone on away-side. In addition, both the associated multiplicity and
the sum of decrease, whileas the increases, with the impact
parameter in the AMPT model including partonic dynamics from string melting
scenario.Comment: 9 pages, 5 figures; Physics Letters B 641, 362-367 (2006
A Dithienylbenzothiadiazole Pure Red Molecular Emitter with Electron Transport and Exciton Self-Confinement for Nondoped Organic Red-Light-Emitting Diodes
An amorphous photoluminescent material based on a dithienylbenzothiadiazole structure has been used for the fabrication of organic red-light-emitting diodes. The synergistic effects of the electron-transport ability and exciton confinement of the emitting material allow for the fabrication of efficient pure-red-light-emitting devices without a hole blocker
Possible implications of the channeling effect in NaI(Tl) crystals
The channeling effect of low energy ions along the crystallographic axes and
planes of NaI(Tl) crystals is discussed in the framework of corollary
investigations on WIMP Dark Matter candidates. In fact, the modeling of this
existing effect implies a more complex evaluation of the luminosity yield for
low energy recoiling Na and I ions. In the present paper related
phenomenological arguments are developed and possible implications are
discussed at some extent.Comment: 16 pages, 10 figures, preprint ROM2F/2007/15, submitted for
publicatio
- âŠ