19 research outputs found

    The localization of single pulse in VLBI observation

    Full text link
    In our previous work, we propose a cross spectrum based method to extract single pulse signals from RFI contaminated data, which is originated from geodetic VLBI postprocessing. This method fully utilizes fringe phase information of the cross spectrum and hence maximizes signal power, however the localization was not discussed in that work yet. As the continuation of that work, in this paper, we further study how to localize single pulses using astrometric solving method. Assuming that the burst is a point source, we derive the burst position by solving a set of linear equations given the relation between residual delay and offset to a priori position. We find that the single pulse localization results given by both astrometric solving and radio imaging are consistent within 3 sigma level. Therefore we claim that it is possible to derive the position of a single pulse with reasonable precision based on only 3 or even 2 baselines with 4 milliseconds integration. The combination of cross spectrum based detection and the localization proposed in this work then provide a thorough solution for searching single pulse in VLBI observation. According to our calculation, our pipeline gives comparable accuracy as radio imaging pipeline. Moreover, the computational cost of our pipeline is much smaller, which makes it more practical for FRB search in regular VLBI observation. The pipeline is now publicly available and we name it as "VOLKS", which is the acronym of "VLBI Observation for frb Localization Keen Searcher".Comment: 11 pages, 4 figures, 3 tables, accepted for publication in A

    Cosmological constraints from the capture of non-Gaussianity in Weak Lensing data

    Full text link
    Weak gravitational lensing has become a common tool to constrain the cosmological model. The majority of the methods to derive constraints on cosmological parameters use second-order statistics of the cosmic shear. Despite their success, second-order statistics are not optimal and degeneracies between some parameters remain. Tighter constraints can be obtained if second-order statistics are combined with a statistic that is efficient to capture non-Gaussianity. In this paper, we search for such a statistical tool and we show that there is additional information to be extracted from statistical analysis of the convergence maps beyond what can be obtained from statistical analysis of the shear field. For this purpose, we have carried out a large number of cosmological simulations along the {\sigma}8-{\Omega}m degeneracy, and we have considered three different statistics commonly used for non-Gaussian features characterization: skewness, kurtosis and peak count. To be able to investigate non-Gaussianity directly in the shear field we have used the aperture mass definition of these three statistics for different scales. Then, the results have been compared with the results obtained with the same statistics estimated in the convergence maps at the same scales. First, we show that shear statistics give similar constraints to those given by convergence statistics, if the same scale is considered. In addition, we find that the peak count statistic is the best to capture non-Gaussianities in the weak lensing field and to break the {\sigma}8-{\Omega}m degeneracy. We show that this statistical analysis should be conducted in the convergence maps: first, because there exist fast algorithms to compute the convergence map for different scales, and secondly because it offers the opportunity to denoise the reconstructed convergence map, which improves non-Gaussian features extraction.Comment: Accepted for publication in MNRAS (11 pages, 5 figures, 9 tables

    A bias in cosmic shear from galaxy selection: results from ray-tracing simulations

    Full text link
    We identify and study a previously unknown systematic effect on cosmic shear measurements, caused by the selection of galaxies used for shape measurement, in particular the rejection of close (blended) galaxy pairs. We use ray-tracing simulations based on the Millennium Simulation and a semi-analytical model of galaxy formation to create realistic galaxy catalogues. From these, we quantify the bias in the shear correlation functions by comparing measurements made from galaxy catalogues with and without removal of close pairs. A likelihood analysis is used to quantify the resulting shift in estimates of cosmological parameters. The filtering of objects with close neighbours (a) changes the redshift distribution of the galaxies used for correlation function measurements, and (b) correlates the number density of sources in the background with the density field in the foreground. This leads to a scale-dependent bias of the correlation function of several percent, translating into biases of cosmological parameters of similar amplitude. This makes this new systematic effect potentially harmful for upcoming and planned cosmic shear surveys. As a remedy, we propose and test a weighting scheme that can significantly reduce the bias.Comment: 9 pages, 9 figures, version accepted for publication in Astronomy & Astrophysic

    FASTLens (FAst STatistics for weak Lensing) : Fast method for Weak Lensing Statistics and map making

    Full text link
    With increasingly large data sets, weak lensing measurements are able to measure cosmological parameters with ever greater precision. However this increased accuracy also places greater demands on the statistical tools used to extract the available information. To date, the majority of lensing analyses use the two point-statistics of the cosmic shear field. These can either be studied directly using the two-point correlation function, or in Fourier space, using the power spectrum. But analyzing weak lensing data inevitably involves the masking out of regions or example to remove bright stars from the field. Masking out the stars is common practice but the gaps in the data need proper handling. In this paper, we show how an inpainting technique allows us to properly fill in these gaps with only NlogNN \log N operations, leading to a new image from which we can compute straight forwardly and with a very good accuracy both the pow er spectrum and the bispectrum. We propose then a new method to compute the bispectrum with a polar FFT algorithm, which has the main advantage of avoiding any interpolation in the Fourier domain. Finally we propose a new method for dark matter mass map reconstruction from shear observations which integrates this new inpainting concept. A range of examples based on 3D N-body simulations illustrates the results.Comment: Final version accepted by MNRAS. The FASTLens software is available from the following link : http://irfu.cea.fr/Ast/fastlens.software.ph

    Constraining the dark energy dynamics with the cosmic microwave background bispectrum

    Full text link
    We consider the influence of the dark energy dynamics at the onset of cosmic acceleration on the Cosmic Microwave Background (CMB) bispectrum, through the weak lensing effect induced by structure formation. We study the line of sight behavior of the contribution to the bispectrum signal at a given angular multipole ll: we show that it is non-zero in a narrow interval centered at a redshift zz satisfying the relation l/r(z)kNL(z)l/r(z)\simeq k_{NL}(z), where the wavenumber corresponds to the scale entering the non-linear phase, and rr is the cosmological comoving distance. The relevant redshift interval is in the range 0.1\lsim z\lsim 2 for multipoles 1000\gsim\ell\gsim 100; the signal amplitude, reflecting the perturbation dynamics, is a function of the cosmological expansion rate at those epochs, probing the dark energy equation of state redshift dependence independently on its present value. We provide a worked example by considering tracking inverse power law and SUGRA Quintessence scenarios, having sensibly different redshift dynamics and respecting all the present observational constraints. For scenarios having the same present equation of state, we find that the effect described above induces a projection feature which makes the bispectra shifted by several tens of multipoles, about 10 times more than the corresponding effect on the ordinary CMB angular power spectrum.Comment: 15 pages, 7 figures, matching version accepted by Physical Review D, one figure improve

    GaBoDS: The Garching-Bonn Deep Survey: VI. Cosmic shear analysis

    Full text link
    Aims. We present a cosmic shear analysis and data validation of 15 square degree high-quality R-band data of the Garching-Bonn Deep Survey obtained with the Wide Field Imager of the MPG/ESO 2.2m telescope. Methods. We measure the two-point shear correlation functions to calculate the aperture mass dispersion. Both statistics are used to perform the data quality control. Combining the cosmic shear signal with a photometric redshift distribution of a galaxy sub-sample obtained from two square degree of UBVRI-band observations of the Deep Public Survey we determine constraints for the matter density Omega_m, the mass power spectrum normalisation sigma_8 and the dark energy density Omega_Lambda in the magnitude interval R in [21.5,24.5]. In this magnitude interval the effective number density of source galaxies is n=12.5/sq. arcmin, and their mean redshift is z_m=0.78. To estimate the posterior likelihood we employ the Monte Carlo Markov Chain method. Results. Using the aperture mass dispersion we obtain for the mass power spectrum normalisation sigma_8=0.80 +- 0.10 (1 sigma statistical error) at a fixed matter density Omega_m=0.30 assuming a flat universe with negligible baryon content and marginalising over the Hubble parameter and the uncertainties in the fitted redshift distribution.Comment: 23 pages, 19 figures, submitted to A&

    Galaxy Clustering and Dark Energy

    Get PDF
    We study the evolution of galaxy clustering in various cosmological models with quintessence. We investigate how the analytical predictions vary with change of dark energy equation of state wXw_X. Comparing these predictions against available data we discuss to what extent the problems of galaxy biasing can be modelled. This will be key in constraining the dark energy equation of state with future galaxy surveys. We use a compilation of various surveys to study the number density and amplitude of galaxy clustering from observations of the local universe at z0z \sim 0 to that of the Lyman break galaxies and Ly-α\alpha emitters at z4.9z \sim 4.9. We find that there is a degeneracy between the dark energy equation of state and the way galaxies populate dark matter haloes; objects are more biased in models with more negative values of dark energy equation of state wXw_X. We conclude that, while future all sky CMB observations will determine cosmological parameters with unprecedented precision, and cross correlation of weak lensing experiments and galaxy surveys will provide a cleaner and accurate picture of bias associated with collapsed objects, the rate of growth of large scale structure in such surveys can potentially constrain the equation of state of dark energy and the potential of the scalar field associated with quintessence. In particular, we show that the abundance and spatial distribution of galaxy clusters at intermediate redshifts strongly depend on the dark energy equation of state. When accurate measurement of galaxy clustering at high-redshit becomes possible, it will provide constraints on dark energy that are independent and complementary to type Ia supernova studies.Comment: 12 pages, 7 figures. Slightly modified version published in MNRA

    Mars Express tracking and orbit determination trials with Chinese VLBI network

    No full text
    With strong support from European Space Agency (ESA), Shanghai Astronomical Observatory (SHAO) organized a tracking and orbit determination trails using Chinese VLBI Network (CVN) to track Mars Express, the first Mars probe launched by ESA. Using a high-resolution VLBI software correlator and Doppler measurement system developed in-house, two sets of tracking data. VLBI and Doppler, were acquired. The trials represent the first successful foray held in China to track a probe about 360 million kilometers away from the Earth. The tracking data are analyzed using a Mars satellite orbit determination software system developed at SHAO. The results show that the accuracy of 5 s integrated three-way-Doppler data is about 0.3 mm/s, or roughly the same accuracy as ESA's tracking data. Position discrepancies between the Doppler-based orbit solution of 8 h arc-length (about 1 orbital revolution) and ESA's reconstructed orbit are of the order of several hundred meters. In preparing for the Russia-China co-sponsored Mars exploration mission Phobos-Grunt-YingHuo, simulations were carried out to evaluate the achievable orbital accuracy levels and the contributions of VLBI and Doppler data respectively. Results show that Doppler data provide better orbit accuracy, so that for VLBI to be able to provide kilometer level orbit solutions, the accuracy of VLBI measurement needs to be improved by at least one order of magnitude
    corecore