208 research outputs found

    Behavioural and morphological evidence for the involvement of glial cell activation in delta opioid receptor function: implications for the development of opioid tolerance

    Get PDF
    Previous studies have demonstrated that prolonged morphine treatment in vivo induces the translocation of delta opioid receptors (δORs) from intracellular compartments to neuronal plasma membranes and this trafficking event is correlated with an increased functional competence of the receptor. The mechanism underlying this phenomenon is unknown; however chronic morphine treatment has been shown to involve the activation and hypertrophy of spinal glial cells. In the present study we have examined whether activated glia may be associated with the enhanced δOR-mediated antinociception observed following prolonged morphine treatment. Accordingly, animals were treated with morphine with or without concomitant administration of propentofylline, an inhibitor of glial activation that was previously shown to block the development of morphine antinociceptive tolerance. The morphine regimen previously demonstrated to initiate δOR trafficking induced the activation of both astrocytes and microglia in the dorsal spinal cord as indicated by a significant increase in cell volume and cell surface area. Consistent with previous data, morphine-treated rats displayed a significant augmentation in δOR-mediated antinociception. Concomitant spinal administration of propentofylline with morphine significantly attenuated the spinal immune response as well as the morphine-induced enhancement of δOR-mediated effects. These results complement previous reports that glial activation contributes to a state of opioid analgesic tolerance, and also suggest that neuro-glial communication is likely responsible in part for the altered functional competence in δOR-mediated effects following morphine treatment

    How large should whales be?

    Full text link
    The evolution and distribution of species body sizes for terrestrial mammals is well-explained by a macroevolutionary tradeoff between short-term selective advantages and long-term extinction risks from increased species body size, unfolding above the 2g minimum size induced by thermoregulation in air. Here, we consider whether this same tradeoff, formalized as a constrained convection-reaction-diffusion system, can also explain the sizes of fully aquatic mammals, which have not previously been considered. By replacing the terrestrial minimum with a pelagic one, at roughly 7000g, the terrestrial mammal tradeoff model accurately predicts, with no tunable parameters, the observed body masses of all extant cetacean species, including the 175,000,000g Blue Whale. This strong agreement between theory and data suggests that a universal macroevolutionary tradeoff governs body size evolution for all mammals, regardless of their habitat. The dramatic sizes of cetaceans can thus be attributed mainly to the increased convective heat loss is water, which shifts the species size distribution upward and pushes its right tail into ranges inaccessible to terrestrial mammals. Under this macroevolutionary tradeoff, the largest expected species occurs where the rate at which smaller-bodied species move up into large-bodied niches approximately equals the rate at which extinction removes them.Comment: 7 pages, 3 figures, 2 data table

    The impact of a decision aid about heart disease prevention on patients' discussions with their doctor and their plans for prevention: a pilot randomized trial

    Get PDF
    BACKGROUND: Low utilization of effective coronary heart disease (CHD) prevention strategies may be due to many factors, but chief among them is the lack of patient involvement in prevention decisions. We undertook this study to test the effectiveness of an individually-tailored, computerized decision aid about CHD on patients' discussions with their doctor and their plans for CHD prevention. METHODS: We conducted a pilot randomized trial in a convenience sample of adults with no previous history of cardiovascular disease to test the effectiveness of an individually-tailored, computerized decision aid about CHD prevention against a risk factor list that patients could present to their doctor. RESULTS: We enrolled 75 adults. Mean age was 53. 59% were female, 73% white, and 23% African-American. 66% had some college education. 43% had a 10-year CHD risk of 0–5%, 25% a risk of 6–10%, 24% a risk of 11–20%, and 5% a risk of > 20%. 78% had at least one option to reduce their CHD risk, but only 45% accurately identified the strategies best supported by evidence. 41 patients received the decision aid, 34 received usual care. In unadjusted analysis, the decision aid increased the proportion of patients who discussed CHD risk reduction with their doctor from 24% to 40% (absolute difference 16%; 95% CI -4% to +37%) and increased the proportion who had a specific plan to reduce their risk from 24% to 37% (absolute difference 13%; 95% CI -7% to +34%). In pre-post testing, the decision aid also appeared to increase the proportion of patients with plans to intervene on their CHD risk (absolute increase ranging from 21% to 47% for planned medication use and 5% to 16% for planned behavioral interventions). CONCLUSION: Our study confirms patients' limited knowledge about their CHD risk and effective risk reduction options and provides preliminary evidence that an individually-tailored decision aid about CHD prevention might be expected to increase patients' discussions about CHD prevention with their doctor and their plans for CHD risk reduction. These findings should be replicated in studies with a larger sample size and patients at overall higher risk of CHD. Trial Registration: ClinicalTrials.gov NCT0031597

    TcOPT3, a Member of Oligopeptide Transporters from the Hyperaccumulator Thlaspi caerulescens, Is a Novel Fe/Zn/Cd/Cu Transporter

    Get PDF
    BACKGROUND: Thlaspi caerulescens is a natural selected heavy metal hyperaccumulator that can not only tolerate but also accumulate extremely high levels of heavy metals in the shoots. Thus, to identify the transportors involved in metal long-distance transportation is very important for understanding the mechanism of heavy metal accumulation in this hyperaccumulator. METHODOLOGY/PRINCIPAL FINDINGS: We cloned and characterized a novel gene TcOPT3 of OPT family from T. caerulescens. TcOPT3 was pronouncedly expressed in aerial parts, including stem and leaf. Moreover, in situ hybridization analyses showed that TcOPT3 expressed in the plant vascular systems, especially in the pericycle cells that may be involved in the long-distance transportation. The expression of TcOPT3 was highly induced by iron (Fe) and zinc (Zn) deficiency, especially in the stem and leaf. Sub-cellular localization showed that TcOPT3 was a plasma membrane-localized protein. Furthermore, heterogonous expression of TcOPT3 by mutant yeast (Saccharomyces cerevisiae) complementation experiments demonstrated that TcOPT3 could transport Fe(2+) and Zn(2+). Moreover, expression of TcOPT3 in yeast increased metal (Fe, Zn, Cu and Cd) accumulation and resulted in an increased sensitivity to cadmium (Cd) and copper (Cu). CONCLUSIONS: Our data demonstrated that TcOPT3 might encode an Fe/Zn/Cd/Cu influx transporter with broad-substrate. This is the first report showing that TcOPT3 may be involved in metal long-distance transportation and contribute to the heavy metal hyperaccumulation

    A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication

    Get PDF
    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome

    The effects of breastfeeding on retinoblastoma development: Results from an international multicenter retinoblastoma survey

    Get PDF
    The protective effects of breastfeeding on various childhood malignancies have been established but an association has not yet been determined for retinoblastoma (RB). We aimed to further investigate the role of breastfeeding in the severity of nonhereditary RB development, assessing relationship to (1) age at diagnosis, (2) ocular prognosis, measured by International Intraocular RB Classification (IIRC) or Intraocular Classification of RB (ICRB) group and success of eye salvage, and (3) extraocular involvement. Analyses were performed on a global dataset subgroup of 344 RB patients whose legal guardian(s) consented to answer a neonatal questionnaire. Patients with undetermined or mixed feeding history, family history of RB, or sporadic bilateral RB were excluded. There was no statistically significant difference between breastfed and formula-fed groups in (1) age at diagnosis (p = 0.20), (2) ocular prognosis measures of IIRC/ICRB group (p = 0.62) and success of eye salvage (p = 0.16), or (3) extraocular involvement shown by International Retinoblastoma Staging System (IRSS) at presentation (p = 0.74), lymph node involvement (p = 0.20), and distant metastases (p = 0.37). This study suggests that breastfeeding neither impacts the sporadic development nor is associated with a decrease in the severity of nonhereditary RB as measured by age at diagnosis, stage of disease, ocular prognosis, and extraocular spread. A further exploration into the impact of diet on children who develop RB is warranted

    Linking mixing processes and climate variability to the heat content distribution of the Eastern Mediterranean abyss

    Get PDF
    The heat contained in the ocean (OHC) dominates the Earth’s energy budget and hence represents a fundamental parameter for understanding climate changes. However, paucity of observational data hampers our knowledge on OHC variability, particularly in abyssal areas. Here, we analyze water characteristics, observed during the last three decades in the abyssal Ionian Sea (Eastern Mediterranean), where two competing convective sources of bottom water exist. We find a heat storage of ~1.6 W/m2– twice that assessed globally in the same period – exceptionally well-spread throughout the local abyssal layers. Such an OHC accumulation stems from progressive warming and salinification of the Eastern Mediterranean, producing warmer near-bottom waters. We analyze a new process that involves convectively-generated waters reaching the abyss as well as the triggering of a diapycnal mixing due to rough bathymetry, which brings to a warming and thickening of the bottom layer, also influencing water-column potential vorticity. This may affect the prevailing circulation, altering the local cyclonic/anticyclonic long-term variability and hence precondition future water-masses formation and the redistribution of heat along the entire water-column

    Why Are Some Plant Genera More Invasive Than Others?

    Get PDF
    Determining how biological traits are related to the ability of groups of organisms to become economically damaging when established outside of their native ranges is a major goal of population biology, and important in the management of invasive species. Little is known about why some taxonomic groups are more likely to become pests than others among plants. We investigated traits that discriminate vascular plant genera, a level of taxonomic generality at which risk assessment and screening could be more effectively performed, according to the proportion of naturalized species which are pests. We focused on the United States and Canada, and, because our purpose is ultimately regulatory, considered species classified as weeds or noxious. Using contingency tables, we identified 11 genera of vascular plants that are disproportionately represented by invasive species. Results from boosted regression tree analyses show that these categories reflect biological differences. In summary, approximately 25% of variation in genus proportions of weeds or noxious species was explained by biological covariates. Key explanatory traits included genus means for wetland habitat affinity, chromosome number, and seed mass

    Androgen receptor expression predicts breast cancer survival: the role of genetic and epigenetic events

    Get PDF
    Background: Breast cancer outcome, including response to therapy, risk of metastasis and survival, is difficult to predict using currently available methods, highlighting the urgent need for more informative biomarkers. Androgen receptor (AR) has been implicated in breast carcinogenesis however its potential to be an informative biomarker has yet to be fully explored. In this study, AR protein levels were determined in a cohort of 73 Grade III invasive breast ductal adenocarcinomas
    corecore