1,563 research outputs found
Recommended from our members
Regulation of nerve growth and patterning by cell surface protein disulphide isomerase.
Contact repulsion of growing axons is an essential mechanism for spinal nerve patterning. In birds and mammals the embryonic somites generate a linear series of impenetrable barriers, forcing axon growth cones to traverse one half of each somite as they extend towards their body targets. This study shows that protein disulphide isomerase provides a key component of these barriers, mediating contact repulsion at the cell surface in chick half-somites. Repulsion is reduced both in vivo and in vitro by a range of methods that inhibit enzyme activity. The activity is critical in initiating a nitric oxide/S-nitrosylation-dependent signal transduction pathway that regulates the growth cone cytoskeleton. Rat forebrain grey matter extracts contain a similar activity, and the enzyme is expressed at the surface of cultured human astrocytic cells and rat cortical astrocytes. We suggest this system is co-opted in the brain to counteract and regulate aberrant nerve terminal growth
Disturbance and diversity at two spatial scales
The spatial scale of disturbance is a factor potentially influencing the relationship between disturbance and diversity. There has been discussion on whether disturbances that affect local communities and create a mosaic of patches in different successional stages have the same effect on diversity as regional disturbances that affect the whole landscape. In a microcosm experiment with metacommunities of aquatic protists, we compared the effect of local and regional disturbances on the disturbance–diversity relationship. Local disturbances destroyed entire local communities of the metacommunity and required reimmigration from neighboring communities, while regional disturbances affected the whole metacommunity but left part of each local community intact. Both disturbance types led to a negative relationship between disturbance intensity and Shannon diversity. With strong local disturbance, this decrease in diversity was due to species loss, while strong regional disturbance had no effect on species richness but reduced the evenness of the community. Growth rate appeared to be the most important trait for survival after strong local disturbance and dominance after strong regional disturbance. The pattern of the disturbance–diversity relationship was similar for both local and regional diversity. Although local disturbances at least temporally increased beta diversity by creating a mosaic of differently disturbed patches, this high dissimilarity did not result in regional diversity being increased relative to local diversity. The disturbance–diversity relationship was negative for both scales of diversity. The flat competitive hierarchy and absence of a trade-off between competition and colonization ability are a likely explanation for this pattern
Dynamical Boson Stars
The idea of stable, localized bundles of energy has strong appeal as a model
for particles. In the 1950s John Wheeler envisioned such bundles as smooth
configurations of electromagnetic energy that he called {\em geons}, but none
were found. Instead, particle-like solutions were found in the late 1960s with
the addition of a scalar field, and these were given the name {\em boson
stars}. Since then, boson stars find use in a wide variety of models as sources
of dark matter, as black hole mimickers, in simple models of binary systems,
and as a tool in finding black holes in higher dimensions with only a single
killing vector. We discuss important varieties of boson stars, their dynamic
properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in
Relativity; major revision in 201
The Endogenous Th17 Response in NO<inf>2</inf>-Promoted Allergic Airway Disease Is Dispensable for Airway Hyperresponsiveness and Distinct from Th17 Adoptive Transfer
Severe, glucocorticoid-resistant asthma comprises 5-7% of patients with asthma. IL-17 is a biomarker of severe asthma, and the adoptive transfer of Th17 cells in mice is sufficient to induce glucocorticoid-resistant allergic airway disease. Nitrogen dioxide (NO2) is an environmental toxin that correlates with asthma severity, exacerbation, and risk of adverse outcomes. Mice that are allergically sensitized to the antigen ovalbumin by exposure to NO2 exhibit a mixed Th2/Th17 adaptive immune response and eosinophil and neutrophil recruitment to the airway following antigen challenge, a phenotype reminiscent of severe clinical asthma. Because IL-1 receptor (IL-1R) signaling is critical in the generation of the Th17 response in vivo, we hypothesized that the IL-1R/Th17 axis contributes to pulmonary inflammation and airway hyperresponsiveness (AHR) in NO2-promoted allergic airway disease and manifests in glucocorticoid-resistant cytokine production. IL-17A neutralization at the time of antigen challenge or genetic deficiency in IL-1R resulted in decreased neutrophil recruitment to the airway following antigen challenge but did not protect against the development of AHR. Instead, IL-1R-/- mice developed exacerbated AHR compared to WT mice. Lung cells from NO2-allergically inflamed mice that were treated in vitro with dexamethasone (Dex) during antigen restimulation exhibited reduced Th17 cytokine production, whereas Th17 cytokine production by lung cells from recipient mice of in vitro Th17-polarized OTII T-cells was resistant to Dex. These results demonstrate that the IL-1R/Th17 axis does not contribute to AHR development in NO2-promoted allergic airway disease, that Th17 adoptive transfer does not necessarily reflect an endogenously-generated Th17 response, and that functions of Th17 responses are contingent on the experimental conditions in which they are generated. © 2013 Martin et al
Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model
Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures
Direct comparison of methionine restriction with leucine restriction on the metabolic health of C57BL/6J mice
EKL was the recipient of a BBSRC postgraduate studentship. This work was funded by Tenovus Scotland project grant to MD and NM (G13/07) and BBSRC DTG. MD is also supported by the British Heart Foundation (PG/09/048/27675, PG/11/8/28703 and PG/14/43/30889) and Diabetes UK (14/0004853). NM is funded by British Heart Foundation (PG/16/90/32518).Peer reviewedPublisher PD
From affect programs to dynamical discrete emotions
According to Discrete Emotion Theory, a number of emotions are distinguishable on the basis of neural, physiological, behavioral and expressive features. Critics of this view emphasize the variability and context-sensitivity of emotions. This paper discusses some of these criticisms, and argues that they do not undermine the claim that emotions are discrete. This paper also presents some works in dynamical affective science, and argues that to conceive of discrete emotions as self-organizing and softly assembled patterns of various processes accounts more naturally than traditional Discrete Emotion Theory for the variability and context-sensitivity of emotions
Mother–infant interaction in schizophrenia:Transmitting risk or resilience? A systematic review of the literature
Purpose:
The parent–infant relationship is an important context for identifying very early risk and resilience factors and targets for the development of preventative interventions. The aim of this study was to systematically review studies investigating the early caregiver–infant relationship and attachment in offspring of parents with schizophrenia.
Methods:
We searched computerized databases for relevant articles investigating the relationship between early caregiver–infant relationship and outcomes for offspring of a caregiver with a diagnosis of schizophrenia. Studies were assessed for risk of bias.
Results:
We identified 27 studies derived from 10 cohorts, comprising 208 women diagnosed with schizophrenia, 71 with other psychoses, 203 women with depression, 59 women with mania/bipolar disorder, 40 with personality disorder, 8 with unspecified mental disorders and 119 non-psychiatric controls. There was some evidence to support disturbances in maternal behaviour amongst those with a diagnosis of schizophrenia and there was more limited evidence of disturbances in infant behaviour and mutuality of interaction.
Conclusions:
Further research should investigate both sources of resilience and risk in the development of offspring of parents with a diagnosis of schizophrenia and psychosis. Given the lack of specificity observed in this review, these studies should also include maternal affective disorders including depressive and bipolar disorders
Microbial Patterns Signaling via Toll-Like Receptors 2 and 5 Contribute to Epithelial Repair, Growth and Survival
Epithelial cells (ECs) continuously interact with microorganisms and detect their presence via different pattern-recognition receptors (PRRs) including Toll-like receptors (TLRs). Ligation of epithelial TLRs by pathogens is usually associated with the induction of pro-inflammatory mediators and antimicrobial factors. In this study, using human airway ECs as a model, we found that detection of microbial patterns via epithelial TLRs directly regulates tissue homeostasis. Staphylococcus aureus (S. aureus) and microbial patterns signaling via TLR2 and TLR5 induce a set of non-immune epithelial responses including cell migration, wound repair, proliferation, and survival of primary and cancerous ECs. Using small interfering RNA (siRNA) gene targeting, receptor-tyrosine kinase microarray and inhibition studies, we determined that TLR and the epidermal growth factor receptor (EGFR) mediate the stimulating effect of microbial patterns on epithelial repair. Microbial patterns signaling via Toll-like receptors 2 and 5 contribute to epithelial repair, growth and survival. This effect is independent of hematopoietic and other cells as well as inflammatory cytokines suggesting that epithelia are able to regulate their integrity in an autonomous non-inflammatory manner by sensing microbes directly via TLRs
Multilevel Parallelization of AutoDock 4.2
<p>Abstract</p> <p>Background</p> <p>Virtual (computational) screening is an increasingly important tool for drug discovery. AutoDock is a popular open-source application for performing molecular docking, the prediction of ligand-receptor interactions. AutoDock is a serial application, though several previous efforts have parallelized various aspects of the program. In this paper, we report on a multi-level parallelization of AutoDock 4.2 (mpAD4).</p> <p>Results</p> <p>Using MPI and OpenMP, AutoDock 4.2 was parallelized for use on MPI-enabled systems and to multithread the execution of individual docking jobs. In addition, code was implemented to reduce input/output (I/O) traffic by reusing grid maps at each node from docking to docking. Performance of mpAD4 was examined on two multiprocessor computers.</p> <p>Conclusions</p> <p>Using MPI with OpenMP multithreading, mpAD4 scales with near linearity on the multiprocessor systems tested. In situations where I/O is limiting, reuse of grid maps reduces both system I/O and overall screening time. Multithreading of AutoDock's Lamarkian Genetic Algorithm with OpenMP increases the speed of execution of individual docking jobs, and when combined with MPI parallelization can significantly reduce the execution time of virtual screens. This work is significant in that mpAD4 speeds the execution of certain molecular docking workloads and allows the user to optimize the degree of system-level (MPI) and node-level (OpenMP) parallelization to best fit both workloads and computational resources.</p
- …