1,315 research outputs found

    Characterizations of how species mediate ecosystem properties require more comprehensive functional effect descriptors

    Get PDF
    The importance of individual species in mediating ecosystem process and functioning is generally accepted, but categorical descriptors that summarize species-specific contributions to ecosystems tend to reference a limited number of biological traits and underestimate the importance of how organisms interact with their environment. Here, we show how three functionally contrasting sediment-dwelling marine invertebrates affect fluid and particle transport - important processes in mediating nutrient cycling - and use high-resolution reconstructions of burrow geometry to determine the extent and nature of biogenic modification. We find that individual functional effect descriptors fall short of being able to adequately characterize how species mediate the stocks and flows of important ecosystem properties and that, in contrary to common practice and understanding, they are not substitutable with one another because they emphasize different aspects of species activity and behavior. When information derived from these metrics is combined with knowledge of how species behave and modify their environment, however, detailed mechanistic information emerges that increases the likelihood that a species functional standing will be appropriately summarized. Our study provides evidence that more comprehensive functional effect descriptors are required if they are to be of value to those tasked with projecting how altered biodiversity will influence future ecosystems

    Effects of mesenchymal stromal cells versus serum on tendon healing in a controlled experimental trial in an equine model

    Get PDF
    Abstract Background Mesenchymal stromal cells (MSC) have shown promising results in the treatment of tendinopathy in equine medicine, making this therapeutic approach seem favorable for translation to human medicine. Having demonstrated that MSC engraft within the tendon lesions after local injection in an equine model, we hypothesized that they would improve tendon healing superior to serum injection alone. Methods Quadrilateral tendon lesions were induced in six horses by mechanical tissue disruption combined with collagenase application 3 weeks before treatment. Adipose-derived MSC suspended in serum or serum alone were then injected intralesionally. Clinical examinations, ultrasound and magnetic resonance imaging were performed over 24 weeks. Tendon biopsies for histological assessment were taken from the hindlimbs 3 weeks after treatment. Horses were sacrificed after 24 weeks and forelimb tendons were subjected to macroscopic and histological examination as well as analysis of musculoskeletal marker expression. Results Tendons injected with MSC showed a transient increase in inflammation and lesion size, as indicated by clinical and imaging parameters between week 3 and 6 (p < 0.05). Thereafter, symptoms decreased in both groups and, except that in MSC-treated tendons, mean lesion signal intensity as seen in T2w magnetic resonance imaging and cellularity as seen in the histology (p < 0.05) were lower, no major differences could be found at week 24. Conclusions These data suggest that MSC have influenced the inflammatory reaction in a way not described in tendinopathy studies before. However, at the endpoint of the current study, 24 weeks after treatment, no distinct improvement was observed in MSC-treated tendons compared to the serum-injected controls. Future studies are necessary to elucidate whether and under which conditions MSC are beneficial for tendon healing before translation into human medicine

    Adaptive remodeling of the bacterial proteome by specific ribosomal modification regulates Pseudomonas infection and niche colonisation

    Get PDF
    Post-transcriptional control of protein abundance is a highly important, underexplored regulatory process by which organisms respond to their environments. Here we describe an important and previously unidentified regulatory pathway involving the ribosomal modification protein RimK, its regulator proteins RimA and RimB, and the widespread bacterial second messenger cyclic-di-GMP (cdG). Disruption of rimK affects motility and surface attachment in pathogenic and commensal Pseudomonas species, with rimK deletion significantly compromising rhizosphere colonisation by the commensal soil bacterium P. fluorescens, and plant infection by the pathogens P. syringae and P. aeruginosa. RimK functions as an ATP-dependent glutamyl ligase, adding glutamate residues to the C-terminus of ribosomal protein RpsF and inducing specific effects on both ribosome protein complement and function. Deletion of rimK in P. fluorescens leads to markedly reduced levels of multiple ribosomal proteins, and also of the key translational regulator Hfq. In turn, reduced Hfq levels induce specific downstream proteomic changes, with significant increases in multiple ABC transporters, stress response proteins and non-ribosomal peptide synthetases seen for both ΔrimK and Δhfq mutants. The activity of RimK is itself controlled by interactions with RimA, RimB and cdG. We propose that control of RimK activity represents a novel regulatory mechanism that dynamically influences interactions between bacteria and their hosts; translating environmental pressures into dynamic ribosomal changes, and consequently to an adaptive remodeling of the bacterial proteome

    Three-dimensional protonic conductivity in porous organic cage solids

    Get PDF
    Proton conduction is a fundamental process in biology and in devices such as proton exchange membrane fuel cells. To maximize proton conduction, three-dimensional conduction pathways are preferred over one-dimensional pathways, which prevent conduction in two dimensions. Many crystalline porous solids to date show one-dimensional proton conduction. Here we report porous molecular cages with proton conductivities (up to 10−3 S cm−1 at high relative humidity) that compete with extended metal-organic frameworks. The structure of the organic cage imposes a conduction pathway that is necessarily three-dimensional. The cage molecules also promote proton transfer by confining the water molecules while being sufficiently flexible to allow hydrogen bond reorganization. The proton conduction is explained at the molecular level through a combination of proton conductivity measurements, crystallography, molecular simulations and quasi-elastic neutron scattering. These results provide a starting point for high-temperature, anhydrous proton conductors through inclusion of guests other than water in the cage pores

    An interdisciplinary clinical practice model for the management of low-back pain in primary care: the CLIP project

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low-back pain is responsible for significant disability and costs in industrialized countries. Only a minority of subjects suffering from low-back pain will develop persistent disability. However, this minority is responsible for the majority of costs and has the poorest health outcomes. The objective of the Clinic on Low-back pain in Interdisciplinary Practice (CLIP) project was to develop a primary care interdisciplinary practice model for the clinical management of low-back pain and the prevention of persistent disability.</p> <p>Methods</p> <p>Using previously published guidelines, systematic reviews and meta-analyses, a clinical management model for low-back pain was developed by the project team. A structured process facilitating discussions on this model among researchers, stakeholders and clinicians was created. The model was revised following these exchanges, without deviating from the evidence.</p> <p>Results</p> <p>A model consisting of nine elements on clinical management of low-back pain and prevention of persistent disability was developed. The model's two core elements for the prevention of persistent disability are the following: 1) the evaluation of the prognosis at the fourth week of disability, and of key modifiable barriers to return to usual activities if the prognosis is unfavourable; 2) the evaluation of the patient's perceived disability every four weeks, with the evaluation and management of barriers to return to usual activities if perceived disability has not sufficiently improved.</p> <p>Conclusion</p> <p>A primary care interdisciplinary model aimed at improving quality and continuity of care for patients with low-back pain was developed. The effectiveness, efficiency and applicability of the CLIP model in preventing persistent disability in patients suffering from low-back pain should be assessed.</p

    Feeling of pleasure to high-intensity interval exercise is dependent of the number of work bouts and physical activity status

    Get PDF
    Objectives: To examine the affective responses during a single bout of a low-volume HIIE in active and insufficiently active men. Materials and methods: Fifty-eight men (aged 25.3 ± 3.6 years) volunteered to participate in this study: i) active (n = 29) and ii) insufficiently active (n = 29). Each subject undertook i) initial screening and physical evaluation, ii) maximal exercise test, and iii) a single bout of a low-volume HIIE. The HIIE protocol consisted of 10 x 60s work bouts at 90% of maximal treadmill velocity (MTV) interspersed with 60s of active recovery at 30% of MTV. Affective responses (Feeling Scale, -5/+5), rating of perceived exertion (Borg's RPE, 6-20), and heart rate (HR) were recorded during the last 10s of each work bout. A two-factor mixed-model repeated measures ANOVA, independent-samples t test, and chi-squared test were used to data analysis. Results: There were similar positive affective responses to the first three work bouts between insufficiently active and active men (p > 0.05). However, insufficiently active group displayed lower affective responses over time (work bout 4 to 10) than the active group (p 0.05). Conclusions: Insufficiently active and active men report feelings of pleasure to few work bouts (i.e., 3-4) during low-volume HIIE, while the affective responses become more unpleasant over time for insufficiently active subjects. Investigations on the effects of low-volume HIIE protocols including a fewer number of work bouts on health status and fitness of less active subjects would be interesting, especially in the first training weeks

    One ligand, two regulators and three binding sites: How KDPG controls primary carbon metabolism in Pseudomonas

    Get PDF
    Effective regulation of primary carbon metabolism is critically important for bacteria to successfully adapt to different environments. We have identified an uncharacterised transcriptional regulator; RccR, that controls this process in response to carbon source availability. Disruption of rccR in the plant-associated microbe Pseudomonas fluorescens inhibits growth in defined media, and compromises its ability to colonise the wheat rhizosphere. Structurally, RccR is almost identical to the Entner-Doudoroff (ED) pathway regulator HexR, and both proteins are controlled by the same ED-intermediate; 2-keto-3-deoxy-6-phosphogluconate (KDPG). Despite these similarities, HexR and RccR control entirely different aspects of primary metabolism, with RccR regulating pyruvate metabolism (aceEF), the glyoxylate shunt (aceA, glcB, pntAA) and gluconeogenesis (pckA, gap). RccR displays complex and unusual regulatory behaviour; switching repression between the pyruvate metabolism and glyoxylate shunt/gluconeogenesis loci depending on the available carbon source. This regulatory complexity is enabled by two distinct pseudo-palindromic binding sites, differing only in the length of their linker regions, with KDPG binding increasing affinity for the 28 bp aceA binding site but decreasing affinity for the 15 bp aceE site. Thus, RccR is able to simultaneously suppress and activate gene expression in response to carbon source availability. Together, the RccR and HexR regulators enable the rapid coordination of multiple aspects of primary carbon metabolism, in response to levels of a single key intermediate

    Estimation of health effects of prenatal methylmercury exposure using structural equation models

    Get PDF
    BACKGROUND: Observational studies in epidemiology always involve concerns regarding validity, especially measurement error, confounding, missing data, and other problems that may affect the study outcomes. Widely used standard statistical techniques, such as multiple regression analysis, may to some extent adjust for these shortcomings. However, structural equations may incorporate most of these considerations, thereby providing overall adjusted estimations of associations. This approach was used in a large epidemiological data set from a prospective study of developmental methyl-mercury toxicity. RESULTS: Structural equation models were developed for assessment of the association between biomarkers of prenatal mercury exposure and neuropsychological test scores in 7 year old children. Eleven neurobehavioral outcomes were grouped into motor function and verbally mediated function. Adjustment for local dependence and item bias was necessary for a satisfactory fit of the model, but had little impact on the estimated mercury effects. The mercury effect on the two latent neurobehavioral functions was similar to the strongest effects seen for individual test scores of motor function and verbal skills. Adjustment for contaminant exposure to poly chlorinated biphenyls (PCBs) changed the estimates only marginally, but the mercury effect could be reduced to non-significance by assuming a large measurement error for the PCB biomarker. CONCLUSIONS: The structural equation analysis allows correction for measurement error in exposure variables, incorporation of multiple outcomes and incomplete cases. This approach therefore deserves to be applied more frequently in the analysis of complex epidemiological data sets

    DNA Barcoding in the Cycadales: Testing the Potential of Proposed Barcoding Markers for Species Identification of Cycads

    Get PDF
    Barcodes are short segments of DNA that can be used to uniquely identify an unknown specimen to species, particularly when diagnostic morphological features are absent. These sequences could offer a new forensic tool in plant and animal conservation—especially for endangered species such as members of the Cycadales. Ideally, barcodes could be used to positively identify illegally obtained material even in cases where diagnostic features have been purposefully removed or to release confiscated organisms into the proper breeding population. In order to be useful, a DNA barcode sequence must not only easily PCR amplify with universal or near-universal reaction conditions and primers, but also contain enough variation to generate unique identifiers at either the species or population levels. Chloroplast regions suggested by the Plant Working Group of the Consortium for the Barcode of Life (CBoL), and two alternatives, the chloroplast psbA-trnH intergenic spacer and the nuclear ribosomal internal transcribed spacer (nrITS), were tested for their utility in generating unique identifiers for members of the Cycadales. Ease of amplification and sequence generation with universal primers and reaction conditions was determined for each of the seven proposed markers. While none of the proposed markers provided unique identifiers for all species tested, nrITS showed the most promise in terms of variability, although sequencing difficulties remain a drawback. We suggest a workflow for DNA barcoding, including database generation and management, which will ultimately be necessary if we are to succeed in establishing a universal DNA barcode for plants
    corecore