790 research outputs found

    Tibial tubercle osteotomy for access during revision knee arthroplasty: Ethibond suture repair technique

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tibial Tubercle Osteotomy has shown much promise in revision total knee replacement. Methods of repair previously described include screw and wire fixation. Both methods have significant complications.</p> <p>Methods</p> <p>This article describes suture fixation of the osteotomy using Ethibond sutures placed medially with a lateral periosteal hinge.</p> <p>Results</p> <p>This method of fixation relies upon an adequate osteotomy segment including the entire insertion of the patella tendon. The lateral periosteal hinge is maintained and adds to the stability of the construct. A minimum of two number 5 Ethibond sutures are passed medially through drill holes to secure the osteotomy segment. No post-operative immobilisation is required.</p> <p>Conclusion</p> <p>Ethibond sutures provide adequate fixation of the tibial tubercle osteotomy segment in revision knee arthroplasty with reduced risk of complication as compared to conventional fixation methods.</p

    Influenza nucleoprotein delivered with aluminium salts protects mice from an influenza virus that expresses an altered nucleoprotein sequence

    Get PDF
    Influenza virus poses a difficult challenge for protective immunity. This virus is adept at altering its surface proteins, the proteins that are the targets of neutralizing antibody. Consequently, each year a new vaccine must be developed to combat the current recirculating strains. A universal influenza vaccine that primes specific memory cells that recognise conserved parts of the virus could prove to be effective against both annual influenza variants and newly emergent potentially pandemic strains. Such a vaccine will have to contain a safe and effective adjuvant that can be used in individuals of all ages. We examine protection from viral challenge in mice vaccinated with the nucleoprotein from the PR8 strain of influenza A, a protein that is highly conserved across viral subtypes. Vaccination with nucleoprotein delivered with a universally used and safe adjuvant, composed of insoluble aluminium salts, provides protection against viruses that either express the same or an altered version of nucleoprotein. This protection correlated with the presence of nucleoprotein specific CD8 T cells in the lungs of infected animals at early time points after infection. In contrast, immunization with NP delivered with alum and the detoxified LPS adjuvant, monophosphoryl lipid A, provided some protection to the homologous viral strain but no protection against infection by influenza expressing a variant nucleoprotein. Together, these data point towards a vaccine solution for all influenza A subtypes

    Improvement of lower extremity electrodiagnostic findings following a trial of spinal manipulation and motion-based therapy

    Get PDF
    BACKGROUND: Lumbar disc herniation is a problem frequently encountered in manual medicine. While manual therapy has shown reasonable success in symptomatic management of these cases, little information is known how manual therapy may affect the structure and function of the lumbar disc itself. In cases where lumbar disc herniation is accompanied by radicular symptoms, electrodiagnostic testing has been used to provide objective clinical information on nerve function. This report examines the treatment rendered for a patient with lower extremity neurological deficit, as diagnosed on electrodiagnostic testing. Patient was treated using spinal manipulation and exercises performed on a Pettibon Wobble Chairâ„¢, using electrodiagnostic testing as the primary outcome assessment. CASE PRESENTATION: An elderly male patient presented to a private spine clinic with right-sided foot drop. He had been prescribed an ankle-foot orthosis for this condition. All sensory, motor, and reflex findings in the right leg and foot were absent. This was validated on prior electromyography and nerve conduction velocity testing, performed by a board certified neurologist. Patient was treated using spinal manipulation twice-weekly and wobble chair exercises three times daily for 90 days total. Following this treatment, the patient was referred for follow-up electrodiagnostic studies. Significant improvements were made in these studies as well as self-rated daily function. CONCLUSION: Motion-based therapies, as part of a comprehensive rehabilitation program, may contribute to the restoration of daily function and the reversal of neurological insult as detected by electrodiagnostic testing. Electrodiagnostic testing may be a useful clinical tool to evaluate the progress of chiropractic patients with lumbar disc herniation and radicular pain syndromes

    Computational identification of condition-specific miRNA targets based on gene expression profiles and sequence information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are small and noncoding RNAs that play important roles in various biological processes. They regulate target mRNAs post-transcriptionally through complementary base pairing. Since the changes of miRNAs affect the expression of target genes, the expression levels of target genes in specific biological processes could be different from those of non-target genes. Here we demonstrate that gene expression profiles contain useful information in separating miRNA targets from non-targets.</p> <p>Results</p> <p>The gene expression profiles related to various developmental processes and stresses, as well as the sequences of miRNAs and mRNAs in <it>Arabidopsis</it>, were used to determine whether a given gene is a miRNA target. It is based on the model combining the support vector machine (SVM) classifier and the scoring method based on complementary base pairing between miRNAs and mRNAs. The proposed model yielded low false positive rate and retrieved condition-specific candidate targets through a genome-wide screening.</p> <p>Conclusion</p> <p>Our approach provides a novel framework into screening target genes by considering the gene regulation of miRNAs. It can be broadly applied to identify condition-specific targets computationally by embedding information of gene expression profiles.</p

    Entomological Surveillance of Behavioural Resilience and Resistance in Residual Malaria Vector Populations.

    Get PDF
    The most potent malaria vectors rely heavily upon human blood so they are vulnerable to attack with insecticide-treated nets (ITNs) and indoor residual spraying (IRS) within houses. Mosquito taxa that can avoid feeding or resting indoors, or by obtaining blood from animals, mediate a growing proportion of the dwindling transmission that persists as ITNs and IRS are scaled up. Increasing frequency of behavioural evasion traits within persisting residual vector systems usually reflect the successful suppression of the most potent and vulnerable vector taxa by IRS or ITNs, rather than their failure. Many of the commonly observed changes in mosquito behavioural patterns following intervention scale-up may well be explained by modified taxonomic composition and expression of phenotypically plastic behavioural preferences, rather than altered innate preferences of individuals or populations. Detailed review of the contemporary evidence base does not yet provide any clear-cut example of true behavioural resistance and is, therefore, consistent with the hypothesis presented. Caution should be exercised before over-interpreting most existing reports of increased frequency of behavioural traits which enable mosquitoes to evade fatal contact with insecticides: this may simply be the result of suppressing the most behaviourally vulnerable of the vector taxa that constituted the original transmission system. Mosquito taxa which have always exhibited such evasive traits may be more accurately described as behaviourally resilient, rather than resistant. Ongoing national or regional entomological monitoring surveys of physiological susceptibility to insecticides should be supplemented with biologically and epidemiologically meaningfully estimates of malaria vector population dynamics and the behavioural phenotypes that determine intervention impact, in order to design, select, evaluate and optimize the implementation of vector control measures

    Improving precision for detecting change in the shape of the cornea in patients with keratoconus

    Get PDF
    To investigate a method for precision analysis to discriminate true corneal change from measurement imprecision in keratoconus (KC). Thirty patients with KC and 30 healthy controls were included. Coefficients of repeatability and limits of agreement (LOA) were compared using multiple measurements for inter-observer and inter-device agreement with the Pentacam HR, Orbscan IIz, and Tomey Casia SS-1000. Correlation of repeated measurements was evaluated using a linear mixed effect model (also called random effect model). A formula was derived for the theoretical expected change in precision and compared with measured change. Correlation between measurements from the same eye was small (R = 0.13). The 99.73% LOA (3 SD) of the mean of three measurements, provided better precision than 95% LOA (2 SD) of single cut-off values as expected from statistical theory for uncorrelated measurements for evidence of a significant change in corneal shape in patients with keratoconus. This enabled the determination of cut-off values for the detection of true change in corneal shape. The mean of three repeated measurements will provide better precision when there is minimal correlation. Three (rather than two) standard deviations provides a precise estimate of the LOA within or between observers and can be used as a reliable measure for identifying stage-independent corneal shape changes (progression) in keratoconus

    Virulence of 32 Salmonella Strains in Mice

    Get PDF
    Virulence and persistence in the BALB/c mouse gut was tested for 32 strains of Salmonella enterica for which genome sequencing is complete or underway, including 17 serovars within subspecies I (enterica), and two representatives of each of the other five subspecies. Only serovar Paratyphi C strain BAA1715 and serovar Typhimurium strain 14028 were fully virulent in mice. Three divergent atypical Enteritidis strains were not virulent in BALB/c, but two efficiently persisted. Most of the other strains in all six subspecies persisted in the mouse intestinal tract for several weeks in multiple repeat experiments although the frequency and level of persistence varied considerably. Strains with heavily degraded genomes persisted very poorly, if at all. None of the strains tested provided immunity to Typhimurium infection. These data greatly expand on the known significant strain-to-strain variation in mouse virulence and highlight the need for comparative genomic and phenotypic studies

    Bipolar cemented hip hemiarthroplasty in patients with femoral neck fracture who are on hemodialysis is associated with risk of stem migration

    Get PDF
    Background and purpose Femoral neck fractures are considerably more common in patients on hemodialysis than in the general population. We determined the outcome of bipolar hemiarthroplasty for hip fracture in patients with long-term hemodialysis and compared it with that of a matched-paired group of patients with intact renal function

    Extreme genetic fragility of the HIV-1 capsid

    Get PDF
    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency &gt;3%, and were also present in the mutant library, had fitness levels that were &gt;40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies
    • …
    corecore