18,064 research outputs found
Inertial-range kinetic turbulence in pressure-anisotropic astrophysical plasmas
A theoretical framework for low-frequency electromagnetic (drift-)kinetic
turbulence in a collisionless, multi-species plasma is presented. The result
generalises reduced magnetohydrodynamics (RMHD) and kinetic RMHD (Schekochihin
et al. 2009) for pressure-anisotropic plasmas, allowing for species drifts---a
situation routinely encountered in the solar wind and presumably ubiquitous in
hot dilute astrophysical plasmas (e.g. intracluster medium). Two main
objectives are achieved. First, in a non-Maxwellian plasma, the relationships
between fluctuating fields (e.g., the Alfven ratio) are order-unity modified
compared to the more commonly considered Maxwellian case, and so a quantitative
theory is developed to support quantitative measurements now possible in the
solar wind. The main physical feature of low-frequency plasma turbulence
survives the generalisation to non-Maxwellian distributions: Alfvenic and
compressive fluctuations are energetically decoupled, with the latter passively
advected by the former; the Alfvenic cascade is fluid, satisfying RMHD
equations (with the Alfven speed modified by pressure anisotropy and species
drifts), whereas the compressive cascade is kinetic and subject to
collisionless damping. Secondly, the organising principle of this turbulence is
elucidated in the form of a generalised kinetic free-energy invariant. It is
shown that non-Maxwellian features in the distribution function reduce the rate
of phase mixing and the efficacy of magnetic stresses; these changes influence
the partitioning of free energy amongst the various cascade channels. As the
firehose or mirror instability thresholds are approached, the dynamics of the
plasma are modified so as to reduce the energetic cost of bending
magnetic-field lines or of compressing/rarefying them. Finally, it is shown
that this theory can be derived as a long-wavelength limit of non-Maxwellian
slab gyrokinetics.Comment: 61 pages, accepted to Journal of Plasma Physics; Abstract abridge
Direct Observation of the Superfluid Phase Transition in Ultracold Fermi Gases
Water freezes into ice, atomic spins spontaneously align in a magnet, liquid
helium becomes superfluid: Phase transitions are dramatic phenomena. However,
despite the drastic change in the system's behaviour, observing the transition
can sometimes be subtle. The hallmark of Bose-Einstein condensation (BEC) and
superfluidity in trapped, weakly interacting Bose gases is the sudden
appearance of a dense central core inside a thermal cloud. In strongly
interacting gases, such as the recently observed fermionic superfluids, this
clear separation between the superfluid and the normal parts of the cloud is no
longer given. Condensates of fermion pairs could be detected only using
magnetic field sweeps into the weakly interacting regime. The quantitative
description of these sweeps presents a major theoretical challenge. Here we
demonstrate that the superfluid phase transition can be directly observed by
sudden changes in the shape of the clouds, in complete analogy to the case of
weakly interacting Bose gases. By preparing unequal mixtures of the two spin
components involved in the pairing, we greatly enhance the contrast between the
superfluid core and the normal component. Furthermore, the non-interacting
wings of excess atoms serve as a direct and reliable thermometer. Even in the
normal state, strong interactions significantly deform the density profile of
the majority spin component. We show that it is these interactions which drive
the normal-to-superfluid transition at the critical population imbalance of
70(5)%.Comment: 16 pages (incl. Supplemental Material), 5 figure
Optimizing the scale of markets for water quality trading
Applying market approaches to environmental regulations requires establishing a spatial scale for trading. Spatially large markets usually increase opportunities for abatement cost savings but increase the potential for pollution damages (hot spots), vice versa for spatially small markets. We develop a coupled hydrologic-economic modeling approach for application to point source emissions trading by a large number of sources and apply this approach to the wastewater treatment plants (WWTPs) within the watershed of the second largest estuary in the U.S. We consider two different administrative structures that govern the trade of emission permits: one-for-one trading (the number of permits required for each unit of emission is the same for every WWTP) and trading ratios (the number of permits required for each unit of emissions varies across WWTP). Results show that water quality regulators should allow trading to occur at the river basin scale as an appropriate first-step policy, as is being done in a limited number of cases via compliance associations. Larger spatial scales may be needed under conditions of increased abatement costs. The optimal scale of the market is generally the same regardless of whether one-for-one trading or trading ratios are employed
Recommended from our members
Flow Patterns at Stented Coronary Bifurcations Computational Fluid Dynamics Analysis
Background—The ideal bifurcation stenting technique is not established, and data on the hemodynamic characteristics at stented bifurcations are limited.
Methods and Results—We used computational fluid dynamics analysis to assess hemodynamic parameters known affect the risk of restenosis and thrombosis at coronary bifurcations after the use of various single- and double-stenting techniques. We assessed the distributions and surface integrals of the time averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (tr). Single main branch stenting without side branch balloon angioplasty or stenting provided the most favorable hemodynamic results (integrated values of TAWSS=4.13·10−4 N, OSI=7.52·10−6 m2, tr=5.57·10−4 m2/Pa) with bifurcational area subjected to OSI values >0.25, >0.35, and >0.45 calculated as 0.36 mm2, 0.04 mm2, and 0 mm2, respectively. Extended bifurcation areas subjected to these OSI values were seen after T-stenting: 0.61 mm2, 0.18 mm2, and 0.02 mm2, respectively. Among the considered double-stenting techniques, crush stenting (integrated values of TAWSS=1.18·10−4 N, OSI=7.75·10−6 m2, tr=6.16·10−4 m2/Pa) gave the most favorable results compared with T-stenting (TAWSS=0.78·10−4 N, OSI=10.40·10−6 m2, tr=6.87·10−4 m2/Pa) or the culotte technique (TAWSS=1.30· 10−4 N, OSI=9.87·10−6 m2, tr=8.78·10−4 m2/Pa).
Conclusions—In the studied models of computer simulations, stenting of the main branch with our without balloon angioplasty of the side branch offers hemodynamic advantages over double stenting. When double stenting is considered, the crush technique with the use of a thin-strut stent may result in improved immediate hemodynamics compared with culotte or T-stenting
The role of mutation rate variation and genetic diversity in the architecture of human disease
Background
We have investigated the role that the mutation rate and the structure of genetic variation at a locus play in determining whether a gene is involved in disease. We predict that the mutation rate and its genetic diversity should be higher in genes associated with disease, unless all genes that could cause disease have already been identified.
Results
Consistent with our predictions we find that genes associated with Mendelian and complex disease are substantially longer than non-disease genes. However, we find that both Mendelian and complex disease genes are found in regions of the genome with relatively low mutation rates, as inferred from intron divergence between humans and chimpanzees, and they are predicted to have similar rates of non-synonymous mutation as other genes. Finally, we find that disease genes are in regions of significantly elevated genetic diversity, even when variation in the rate of mutation is controlled for. The effect is small nevertheless.
Conclusions
Our results suggest that gene length contributes to whether a gene is associated with disease. However, the mutation rate and the genetic architecture of the locus appear to play only a minor role in determining whether a gene is associated with disease
Allitridi Inhibits Multiple Cardiac Potassium Channels Expressed in HEK 293 Cells
published_or_final_versio
Determinants of the voltage dependence of G protein modulation within calcium channel β subunits
CaVβ subunits of voltage-gated calcium channels contain two conserved domains, a src-homology-3 (SH3) domain and a guanylate kinase-like (GK) domain with an intervening HOOK domain. We have shown in a previous study that, although Gβγ-mediated inhibitory modulation of CaV2.2 channels did not require the interaction of a CaVβ subunit with the CaVα1 subunit, when such interaction was prevented by a mutation in the α1 subunit, G protein modulation could not be removed by a large depolarization and showed voltage-independent properties (Leroy et al., J Neurosci 25:6984–6996, 2005). In this study, we have investigated the ability of mutant and truncated CaVβ subunits to support voltage-dependent G protein modulation in order to determine the minimal domain of the CaVβ subunit that is required for this process. We have coexpressed the CaVβ subunit constructs with CaV2.2 and α2δ-2, studied modulation by the activation of the dopamine D2 receptor, and also examined basal tonic modulation. Our main finding is that the CaVβ subunit GK domains, from either β1b or β2, are sufficient to restore voltage dependence to G protein modulation. We also found that the removal of the variable HOOK region from β2a promotes tonic voltage-dependent G protein modulation. We propose that the absence of the HOOK region enhances Gβγ binding affinity, leading to greater tonic modulation by basal levels of Gβγ. This tonic modulation requires the presence of an SH3 domain, as tonic modulation is not supported by any of the CaVβ subunit GK domains alone
Physicochemical analysis of rotavirus segment 11 supports a 'modified panhandle' structure and not the predicted alternative tRNA-like structure (TRLS)
.Rotaviruses are a major cause of acute gastroenteritis, which is often fatal in infants. The viral genome consists of 11 double-stranded RNA segments, but little is known about their cis-acting sequences and structural elements. Covariation studies and phylogenetic analysis exploring the potential structure of RNA11 of rotaviruses suggested that, besides the previously predicted "modified panhandle" structure, the 5' and 3' termini of one of the isoforms of the bovine rotavirus UKtc strain may interact to form a tRNA-like structure (TRLS). Such TRLSs have been identified in RNAs of plant viruses, where they are important for enhancing replication and packaging. However, using tRNA mimicry assays (in vitro aminoacylation and 3'- adenylation), we found no biochemical evidence for tRNA-like functions of RNA11. Capping, synthetic 3' adenylation and manipulation of divalent cation concentrations did not change this finding. NMR studies on a 5'- and 3'-deletion construct of RNA11 containing the putative intra-strand complementary sequences supported a predominant panhandle structure and did not conform to a cloverleaf fold despite the strong evidence for a predicted structure in this conserved region of the viral RNA. Additional viral or cellular factors may be needed to stabilise it into a form with tRNA-like properties
Observation of pseudogap behavior in a strongly interacting Fermi gas
Ultracold atomic Fermi gases present an opportunity to study strongly
interacting Fermi systems in a controlled and uncomplicated setting. The
ability to tune attractive interactions has led to the discovery of
superfluidity in these systems with an extremely high transition temperature,
near T/T_F = 0.2. This superfluidity is the electrically neutral analog of
superconductivity; however, superfluidity in atomic Fermi gases occurs in the
limit of strong interactions and defies a conventional BCS description. For
these strong interactions, it is predicted that the onset of pairing and
superfluidity can occur at different temperatures. This gives rise to a
pseudogap region where, for a range of temperatures, the system retains some of
the characteristics of the superfluid phase, such as a BCS-like dispersion and
a partially gapped density of states, but does not exhibit superfluidity. By
making two independent measurements: the direct observation of pair
condensation in momentum space and a measurement of the single-particle
spectral function using an analog to photoemission spectroscopy, we directly
probe the pseudogap phase. Our measurements reveal a BCS-like dispersion with
back-bending near the Fermi wave vector k_F that persists well above the
transition temperature for pair condensation
Mott physics and band topology in materials with strong spin-orbit interaction
Recent theory and experiment have revealed that strong spin-orbit coupling
can have dramatic qualitative effects on the band structure of weakly
interacting solids. Indeed, it leads to a distinct phase of matter, the
topological band insulator. In this paper, we consider the combined effects of
spin-orbit coupling and strong electron correlation, and show that the former
has both quantitative and qualitative effects upon the correlation-driven Mott
transition. As a specific example we take Ir-based pyrochlores, where the
subsystem of Ir 5d electrons is known to undergo a Mott transition. At weak
electron-electron interaction, we predict that Ir electrons are in a metallic
phase at weak spin-orbit interaction, and in a topological band insulator phase
at strong spin-orbit interaction. Very generally, we show that with increasing
strength of the electron-electron interaction, the effective spin-orbit
coupling is enhanced, increasing the domain of the topological band insulator.
Furthermore, in our model, we argue that with increasing interactions, the
topological band insulator is transformed into a "topological Mott insulator"
phase, which is characterized by gapless surface spin-only excitations. The
full phase diagram also includes a narrow region of gapless Mott insulator with
a spinon Fermi surface, and a magnetically ordered state at still larger
electron-electron interaction.Comment: 10+ pages including 3+ pages of Supplementary Informatio
- …
