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Abstract Applying market approaches to environmental regulations requires establishing a spatial scale
for trading. Spatially large markets usually increase opportunities for abatement cost savings but increase
the potential for pollution damages (hot spots), vice versa for spatially small markets. We develop a coupled
hydrologic-economic modeling approach for application to point source emissions trading by a large num-
ber of sources and apply this approach to the wastewater treatment plants (WWTPs) within the watershed
of the second largest estuary in the U.S. We consider two different administrative structures that govern the
trade of emission permits: one-for-one trading (the number of permits required for each unit of emission is
the same for every WWTP) and trading ratios (the number of permits required for each unit of emissions
varies across WWTP). Results show that water quality regulators should allow trading to occur at the river
basin scale as an appropriate first-step policy, as is being done in a limited number of cases via compliance
associations. Larger spatial scales may be needed under conditions of increased abatement costs. The opti-
mal scale of the market is generally the same regardless of whether one-for-one trading or trading ratios
are employed.

1. Introduction

1.1. Scale of Environmental Markets
The use of market-like mechanisms in environmental regulation (hereafter ‘‘environmental markets’’) is now
well established, and environmental markets span atmospheric emissions, fishing quotas, endangered spe-
cies habitat, and aquatic ecosystems [Boyd et al., 2003]. Yet there is great variability in how such markets are
implemented, particularly in the spatial scale over which these markets are allowed to operate. For example,
the SO2 market—originally designed to consist of two spatial areas of trades—became a single contermi-
nous U.S. market [Burtraw et al. 2005], and aquatic ecosystem service markets adopt a range of watershed
scales [Womble and Doyle, 2012]. Setting a spatial scale is a decision that must be made a priori in establish-
ing an environmental market, and thus is a key policy decision.

The scale of an environmental market can be thought of as being defined by the number of trading areas
(zones) within a larger market domain. As the spatial scale of the market increases, the number of zones
decreases, and correspondingly the number of pollution sources in a given zone increases. For any environ-
mental market, there exists an optimal scale that reflects the trade-off between two competing factors. On
one hand, increasing the scale of the market usually decreases the cost to the market participants of com-
plying with pollution reduction simply by increasing the number of trading options. On the other hand,
increasing the scale of the market opens the possibility of increases in environmental damages through the
resulting spatial pattern of emissions; one large zone allows trades to potentially concentrate pollution into
a particular area, i.e., a pollution hot spot [Boyd et al., 2003]. The notable exception, however, is the set of
pollutants whose effects are not spatially dependent, e.g., chlorofluorocarbons and greenhouse gasses such
as CO2 that are uniformly mixed in the atmosphere. In such cases, the optimal-scale problem is trivial, as
there are no hot spots, and so there should only be one trading zone.

There is a growing interest in determining the optimal scale of environmental markets [e.g., Williams, 2003;
Krysiak and Schweitzer, 2010; Yates et al., 2013]. These papers discuss and utilize theoretical models to exam-
ine the trade-off between compliance costs and hot spots. However, there are two critical gaps in this
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literature. First, there is little in the way of guidance for regulators about how to actually determine the opti-
mal scale for an environmental market. Yates et al. [2013] present an example in which they determine the
optimal scale of a market, but their procedure is impractical for markets with more than about 10 sources of
pollution. Second, the extant literature on optimal scale generally assumes that permits trade within zones
on a one-for-one basis. This means that each source is required to hold one pollution permit to emit one
unit of emissions. If a source reduces emissions by one unit, then it can sell a permit to another source and
that source may increase emissions by one unit. Thus, emissions trade one-for-one. Although one-for-one
trading is frequently used in actual permit markets, water quality trading programs are increasingly apply-
ing a different type of trading in which a given source is required to hold a source-specific quantity of per-
mits for each unit of emissions. As explained in detail below, these requirements determine the rate at
which emissions exchange through trade, and hence are called trading ratios. In this paper, we seek to
develop two practical algorithms for determining the optimal scale of a water quality market and compare
the performance of a market when optimized for scale using one-for-one trading to the performance of a
market optimized for scale using trading ratios.

1.2. Water Quality Trading Programs
Water quality trading programs are a particular application of environmental market principles that has
received considerable theoretical, policy, and rhetorical attention in the water resources and environmental
economics literature [e.g., Dales, 1968; Montgomery, 1972; Eheart, 1980; Eheart et al., 1980; Lence et al., 1988;
Riggs, 1999; Hung and Shaw, 2005; Morgan and Wolverton, 2005; Wainger, 2012]. Water quality markets are
often advocated as a means to reduce the costs of achieving goals of the Clean Water Act, particularly nutri-
ent control requirements [Sado et al., 2010]. Nutrient pollution is regulated by several statutes, the most rel-
evant of which is the National Pollutant Discharge Elimination System (NPDES, 40 CFR 122) through which
the Environmental Protection Agency (EPA) issues a permit that authorizes a regulated point source (e.g.,
wastewater treatment plant, WWTP) to discharge some maximum allowable amount of a pollutant. If the
NPDES system fails to meet ambient water quality standards in a given water body, then an additional regu-
lation of total maximum daily loads (TMDLs) is developed. This procedure sets measurable criteria for each
water body and based on these criteria, constrains the load of a pollutant that can be emitted under the
NPDES. The maximum loads are based on the ability of the aquatic system (channel network and receiving
water body) to assimilate that pollutant and sustain the intended purpose.

Pollutants discharged into water bodies that fall under TMDLs can be derived from point sources (PSs) or
from nonpoint sources (NPSs), such as agricultural or urban runoff, although the latter are notoriously diffi-
cult to monitor and regulate [Stephenson and Shabman, 2011]. Here we focus on PS-PS trade, and in particu-
lar, the promise of specific permitting strategies that have allowed market-like conditions to emerge, one of
which has been developed in North Carolina. This approach is undertaken via a group compliance permit:
within a watershed, PSs subject to NPDES permitting requirements are grouped and assigned individual
source limits, the sum of which defines a cap for the NPDES permit holders. Individual NPDES limits are
waived so long as the overall sum of discharges from the compliance group stays below the cap. Group
compliance participants are able to trade pollutant allowances with others in the group, thus creating
market-like conditions. This approach has been applied to the Neuse River basin in North Carolina through
the Neuse River Compliance Association (NRCA), which was formed in 2002.

A key issue that emerges in any water quality trading program, and particularly in the North Carolina examples,
is the spatial scale over which such group compliance approaches might be allowed to operate and how
increasing or decreasing spatial scale of these markets may affect their efficacy. The Neuse River and Tar River
are adjacent and both flow into the same estuary—the Albemarle-Pamlico Sound. Thus, what might be the eco-
nomic and water quality implications of allowing interbasin trades between the Neuse and Tar? Moreover, three
other river basins (the Roanoke, Chowan, and Pasquotank) flow into the same estuary as the Neuse and the Tar;
should these five different basins be combined into one larger trading association? That is, at what scale should
this water quality market be set to optimize the trade-off between compliance costs and damages?

1.3. Goal, Analysis Approach, and Overview
Our first goal is to develop techniques for determining the optimal scale of water quality markets and of envi-
ronmental markets generally. There are several previous papers that analyze issues of scale for water quality
markets. Sado et al. [2010] analyze PS trades in the Passaic River (New Jersey) to quantify the potential benefits
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of allowing trading amongst the largest 22 WWTPs. They allow for the possibility of trading in zones, but they
only considered compliance costs, not the trade-off between compliance costs and damages from hot spots.
Yates et al. [2013] analyze the optimal scale of trading in the Neuse River basin, but are limited in their ability to
analyze any cases beyond 10 WWTPs. Building on this foundation, we seek to determine the optimal scale for a
market with a large number of WWTPs. The novelty of our work is the application and evaluation of two
approaches to address the ‘‘curse of dimensionality’’ that occurs in optimal-scale problems: as the number of
WWTPs increases, the number of ways that these WWTPs can be organized into markets (the set of feasible mar-
ket designs) increases superexponentially. Our first approach uses a genetic algorithm to efficiently search over
the feasible set. The second approach exploits the existence of multiple hierarchical hydrologic (i.e., watershed)
scales to define a simple search algorithm that greatly reduces the number of market designs evaluated.

Our second goal is to extend the theory of optimal scale to include trading ratios and then compare the
performance of trading ratios to one-for-one trading. Starting with Montgomery [1972], trading ratios have
been proposed for permit markets in which the emissions of pollution have spatial heterogeneity. Simple
intuition suggests that, because trading ratios can be selected to account for these spatial differences, they
should lead to lower total costs than one-for-one trading [Muller and Mendelsohn, 2009; Henry et al., 2011].
As discussed below, however, our model features an information asymmetry. We assume that sources of
pollution have better information about their abatement costs than the regulator. In such a model, trading
ratios may actually lead to higher costs than one-for-one trading [Fowlie and Muller, 2013; Holland and Yates,
2014]. We investigate this issue in conjunction with an optimal-scale analysis.

Our specific application is point source to point source (PS-PS) water quality trading among major NPDES per-
mittees within the entire drainage basin of the Albemarle-Pamlico Sound. The approach developed here is
generalizable to other environmental impact-market scenarios in which there are discrete pollution emitters
that can trade within a spatial area, and the emissions are mixed via environmental processes that cause spa-
tially distributed damages that may be exacerbated by the trading program itself (i.e., damages via hot spots).

2. Methods

2.1. Study System
The Albemarle-Pamlico sound (Figure 1) is the second largest estuary in the U.S. with a contributing water-
shed area of 74,936 km2 (28,922 square miles). Land use in the region is a mixture of agricultural, forest, and

Figure 1. Albemarle-Pamlico Sound Estuary drainage basin. Each WWTP numbered corresponds to the database of WWTPs listed in sup-
porting information 3. The river basins correspond to HUC-6 watersheds, although the Chowan/Pasquotank are often combined because a
major river does not pass through the Pasquotank, although the Chowan River drains into the estuary separate from any streams in the
other basins. The Chowan drains �13,000 km2 and the Pasquotank �9400 km2.
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growing urban/suburban land cover, with a population of over 4.5 million people in 2010. Water quality in
the estuary has declined for decades due to high nitrogen loads (along with other nutrients, including phos-
phorus) derived from agricultural runoff and point sources of industrial and municipal wastewater, all con-
tributing to estuarine eutrophication [Paerl et al., 2006]. The corresponding decline in water quality imposes
significant damages on society [Poor et al., 2007; Walsh et al., 2011]. The watershed draining into the estuary
is comprised of five major river basins: Neuse, Tar, Roanoke, Chowan, and Pasquotank. There are also
smaller watersheds that contribute directly into the estuary. The bulk of the drainage area is within the state
of North Carolina, but a significant portion of the Roanoke and Chowan basins are located within Virginia,
which contributes 80% of the permitted nitrogen loading from the Roanoke basin and 75% from the
Chowan.

Within the watershed at the time of analysis, there are 103 NPDES permitted WWTPs spread throughout
13,633 km of river channel network. WWTPs are given permits for the quantity of Total Nitrogen (TN) that
can be emitted, where TN is the sum of Kjeldahl Nitrogen (ammonia nitrogen 1 organic nitrogen), nitrite
(NO2), and nitrate (NO3). The permitted discharges from WWTPs in the study area range from 0.67 to
3290 L/s (0.015 million gallons per day (MGD) to 75 MGD). Of these, 97.2% (7089 of 7295 kg/d; 15,628 of
16,082 lb/d) of the permitted TN emissions are derived from 51 WWTPs that have permitted discharges
>3290 L/s; EPA classifies WWTPs with discharges >3290 L/s (1 MGD) as ‘‘major.’’ We limit our analysis to
these major emitters.

2.2. Model
The basic building block of our model is a market design formed by assigning WWTPs into trading zones.
There is a distinct permit market in each zone, and there is no trading across zones; the more zones, the
smaller the scale of the market. For each market design, we quantify the total costs (compliance costs and
damages). The optimal scale of the market is defined by the particular market design that leads to the low-
est total costs. The basic theory underlying this calculation has been developed previously assuming that
trading within a zone is one-for-one [Williams, 2003; Krysiak and Schweitzer, 2010; Yates et al., 2013; Malueg
and Yates, 2009]. We adapt this work to allow trade according to a set of arbitrary trading ratios.

There are two salient features to our model. First, we assume that the WWTP operators have better informa-
tion about the costs of abating pollution than the regulator. If this is not the case, then there is no need to
implement a permit market as the regulator can simply assign each WWTP the optimal emissions of pollu-
tion. Second, we assume that water quality matters throughout the river system, not just within the estuary.
This implies that the optimal-scale problem occurs regardless of whether we use one-for-one trading or
trading ratios. By way of contrast, if we only cared about damages at the estuary, then selecting trading
ratios equal to the transfer coefficients (percentage of load to reach the estuary) would keep damages con-
stant for any market design, and we would simply want one large market to minimize abatement costs.

There are m WWTPs that generate emissions of pollution. This pollution causes damages, which are quanti-
fied at n measurement sites. Both the WWTPs and the measurement sites are spatially distributed along the
river network system. We use specific functional forms to capture the costs and damages. Following Weitz-
man [1974], the literature frequently employs quadratic forms because of their tractability. Although quad-
ratic forms may be inaccurate at very high levels of abatement, we do not expect to be in that range for
this study. The costs to WWTP i of abating pollution is

Ci hi ; eið Þ5 k
2

hi

k
2ei

� �2

(1)

where ei are the emissions of pollution, hi is a cost parameter known by the WWTP i but not known to the
regulator, and k is the second derivative of the cost function with respect to emissions (the slope of the
marginal abatement cost function). The regulator views hi as a random variable with expected value �h i and
variance r2

i .

Turning to damages, consider the vectors x and y, where xj is the pollution at site j (mass of total nitrogen
per year) due to the activity of the WWTPs and yj is due to other exogenous sources of pollution (e.g., agri-
cultural runoff). The flow of pollution through the river system is determined by the m 3 n transfer matrix A
that maps emissions from the sources to the measurement sites. If we let e be a vector of emissions, then
x 5 eA. The damage function is
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D x1yð Þ5 1
2

x1yð ÞB x1yð Þt5 1
2

eA1yð ÞB eA1yð Þt (2)

where B is a diagonal matrix with all entries equal to b, and t denotes the transpose of a matrix. We inter-
pret b as the slope of the marginal damage function at a measurement site. Total costs are the sums of the
Ci and D.

Each WWTP is given an endowment of permits wi. From this starting point, they may increase or decrease
emissions of pollution by buying or selling permits with other WWTPs in their trading zone. In mathematical
terms, the set of feasible market designs is simply the collection of all partitions of the set {1,2,3, . . . , m},
where each number identifies a specific WWTP. For example, the market design {1,2,4}, {3,5,6, . . . , m} defines
two trading zones. WWTPs 1, 2, and 4 comprise the first zone, and the rest comprise the second zone.
Notice that each WWTP is in only one trading zone. At one extreme, corresponding to the trivial market
design {1,2,3, . . . , m}, there is a single zone. All WWTPs trade with each other and so we call this the uncon-
strained full trading market design; this is the largest scale of a trading program. At the other extreme, cor-
responding to the market design {1}, {2}, . . . {m}, there are m zones, which precludes any trading, so we call
this the no-trading market design; this is effectively the smallest scale.

A market design may include a small number of WWTPs, so there may be concern that WWTPs will manipu-
late the price in the market to their advantage. Previous theoretical research shows that a given WWTP’s
ability to manipulate the price depends on their abatement cost function and permit endowment relative
to the average abatement cost function and average permit endowment [Yates et al., 2013]. This research
also shows, however, that the effects of this price manipulation on abatement costs and damages tend to
cancel out [Yates et al., 2013], and preliminary experimental evidence supports these theoretical predictions
[Schnier et al., 2014]. Thus, as far as total costs are concerned, we can assume that the individual markets in
a zone are approximately competitive, and thereby analyze them with standard methods [e.g., Montgomery,
1972].

We consider two different administrative structures that govern the trade of permits within a zone. The first
is one-for-one trading. If WWTP i reduces emissions by one unit, then it can sell a permit unit to WWTP j,
and so WWTP j may increase emissions by one unit. We also consider trading ratios. Here each WWTP i
faces a requirement to hold ri pollution permits to emit one unit of pollution. If WWTP reduces emissions by
one unit, then it may trade ri permits to WWTP j, which may then increase emissions by ri=rj . Thus, the ri

determine the rate at which emissions exchange through trade. We describe the choice of the trading ratios
below.

In supporting information 1, we describe the equilibrium emissions of pollution (eeq
i ) as a function of the

permit price, the trading ratios, and the market design. Substituting the values for eeq
i into the abatement

cost and damage function gives the expected total costs W for a given market design

W5
Xm

i51

E Ci hi; eeq
i

� �� �
1E D eeqð Þ½ � (3)

In theory, to determine the optimal scale of the market, one evaluates all possible market designs using this
expression and then selects the market design with the lowest expected total costs. The optimal market
design specifies the optimal number of zones and the optimal assignment of WWTPs into these zones.

In practice, an exhaustive search of the feasible set of market designs is impractical when there are more
than about 10 WWTPs [Yates et al., 2013]. The number of market designs for a given value of m is known as
the Bell number Bm and can be found by repeated application of the formula (starting with B051)

Bm115
Xm

k50

m

k

 !
Bk (4)

In our case, with m 5 51, there are 3 3 1048 possible market designs. Accordingly, we develop two algo-
rithms to obtain low cost, but not necessarily optimal market designs. The first is a genetic algorithm.
Genetic algorithms are applied to a wide variety of scientific, engineering, and economic problems [e.g.,
Holland, 1975; Hartmann, 1998; Morris et al., 1998]. They work particularly well in situations such as ours in
which one must search over a large and discrete space for near-optimal solutions (In our model, the search
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space is equal to the set of market designs. This set is large because there are many possible designs
according to the formula above. It is discrete because the set of market designs cannot be mapped using a
continuous mathematical function.). The key toward obtaining good performance of a genetic algorithm is
in the rules for mating, offspring, and mutations. We describe the details of our implementation and accu-
racy testing of a genetic algorithm in supporting information 2. We refer to those market designs identified
by the genetic algorithm as the ‘‘optimal’’ market designs, while acknowledging that they may not be truly
optimal due to the limitations of the search algorithm. It is important to note that optimal market designs
need not follow geographical or political constraints. They may instead group into a trading zone very geo-
graphically disparate WWTPs in different basins; they may combine some WWTPs from the Roanoke with
the Neuse, or allow all but one WWTPs to trade in a particular watershed. Because of this tendency, regula-
tors may be reluctant to implement the market designs identified by the genetic algorithm. It is therefore
desirable to develop a second algorithm that generates more intuitively structured market designs.

The second algorithm is a simple search algorithm that exploits the natural hierarchy of river basins and
subbasins. Here we consider four ‘‘full trading’’ market designs and the default no-trading market design. In
the first full trading design, there is one zone (i.e., the unconstrained full trading design), so that all WWTPs
may trade with each other. The other market designs retain the full trading idea, but impose various con-
straints on the scale of trading. In the second design, we have full trading constrained by river basins. In this
design, there are five zones, one for each river basin (HUC-6), and all WWTPs in a given basin can trade with
each other, but there is no trade across basins. In the third design, we have full trading constrained by sub-
basins. In this design, there are 13 zones, one for each subbasin, which correspond to HUC-8 scale subba-
sins. All WWTPs in a given subbasin can trade with each other, but there is no trade across subbasins.

The final market design is included to acknowledge that political jurisdictions may not overlap with geo-
graphic distinctions. The study area is divided by the political boundary between North Carolina and Vir-
ginia. Many water quality regulations are initiated and administered by the states rather than the federal
government; the Neuse River Compliance Association, for example, is established by North Carolina legisla-
ture [NCDENR (North Carolina Department of Natural Resources), 2001]. The closest entity for multistate water
quality management is the Roanoke River Basin Bi-State Commission, which like many interstate river basin
commissions is a coordinating but nonregulatory entity (Virginia State Code § 62.1–69.37). Interstate trading
of water quality may then pose difficulties to establish, and a realistic scenario may be that water quality
permits are allowed to be traded within a single state but not between states. As a practical example, the
Chesapeake Bay TMDL establishes water quality trading programs in three separate states, but as of yet
there is no trading across states. Accordingly, our fourth market design corresponds to full trading con-
strained by states. In this market design, all of the WWTPs in North Carolina are in one zone and all of the
WWTPs in Virginia are in another zone. Given these four constrained full trading designs (none, state, river
basin, and subbasin) and the no-trading design, the second algorithm simply calculates the total cost of
each design and then selects the design with the lowest cost.

We run both algorithms on two different regulatory systems. The first has one-for-one trading and the other
has trading ratios set according to the procedure described below.

2.3. Model Parameters
The values for the parameters defining the cost functions and damage function are determined by follow-
ing the procedure in Yates et al. [2013]. The expected value of the cost parameter �h i is assumed to be pro-
portional to the size of WWTP i and, in turn, the variance, ri, to be proportional to the expected value such
that each random variable has a constant coefficient of variation. In particular, we define

ri5
g

100

� 	 hi

2

� �
(5)

The constant of proportionality g can be interpreted as the ‘‘percent error’’ in the random variables. It cap-
tures the intuitive notion that it is quite likely that the outcome of a random variable is within two standard
deviations of the expected value. For example, for a normal random variable, there is a 95% chance that the
random variable takes on a value that is within g percent of the expected value.

With this construction, the trade-off between compliance costs and damages is summarized by the values
of the percent error g and the damage parameter, b (recall from (2) that b is the slope of marginal damage).

Water Resources Research 10.1002/2014WR015395

DOYLE ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 6



As g increases, the regulator becomes more uncertain about compliance costs and hence seeks to increase
the scale of the market. We use the terminology ‘‘increases the severity of compliance costs’’ to describe
this change. As b increases, the severity of damages increases, and hence the regulator seeks to decrease
the scale of the market. Analyzing the effects of a change in b is consistent with a long tradition in the envi-
ronmental economics literature, starting with Weitzman [1974], of examining the ratio of slope of marginal
damage to the slope of marginal abatement cost. Here we vary b and keep k constant. We consider 15
parameter combinations from within the bounds determined by Yates et al. [2013]: 3 for g (5, 10, and 20%
error) and 5 for b (US $30,000 (mg/L)2, US $48,750 (mg/L)2, US $67,500 (mg/L)2, US $86,250 (mg/L)2, and US
$105,000 (mg/L)2). The permit endowment wi is simply set equal to the emissions level that minimizes
expected total costs of the no-trading market design. In this way, the no-trading market design can be
thought of as the optimal command-and-control regulation.

The next set of model parameters are the elements of the transfer matrix A and the vector of exogenous
emissions of total nitrogen y, which is the permitted parameter from WWTPs through the NPDES program.
Each WWTP emits pollution, which is then transferred through the river network to the estuary. We focus
here on nitrogen, although other pollutants could be modeled using similar approaches. The first step is to
determine the location of the emissions and monitoring sites. Each WWTP is treated as a location of emis-
sions and also a location of a monitoring site. We also treat tributary junctions containing WWTPs as addi-
tional monitoring sites and include monitoring sites in the estuary at the mouth of each river basin. This
gives us 96 monitoring sites.

As pollutants are transferred downstream through a river network, there is natural attenuation and reten-
tion, as well as addition of pollutants from other sources (e.g., NPS) that affect natural attenuation. Similar to
our approach of developing a generalizable economic model, to quantify transfer coefficients and spatially
explicit water quality in the river network, we use a widely available nitrogen transfer model: SPARROW—
Spatially-Referenced Regression on Watershed Attributes. The SPARROW model is a nonlinear regression,
which uses spatially referenced watershed and stream channel characteristics to predict in-stream nutrient
loads. The SPARROW model is widely used in studies of watershed-scale water quality patterns, including
the entire Mississippi River basin [Alexander et al., 2000]. One of the utilities of SPARROW here was that the
U.S. Geological Survey has developed the model for much of the Southeastern U.S., including the entire
Albemarle-Pamlico Sound contributing drainage areas [Hoos and McMahon, 2009]. We thus use the SPAR-
ROW results to determine the elements of the transfer matrix, A. Given this and the emissions of pollution
at each WWTP, we then quantify the amount of nitrogen contributed by a specific WWTP at each of the
measurement sites.

Geospatial discharge locations for each WWTP are obtained from EPA’s Enforcement and Compliance His-
tory Online (ECHO). Discharge locations were linked to the nearest stream reach available in the U.S. Geo-
logical Survey’s SPARROW model (SPARROW) for the Southeastern U.S. [Hoos and McMahon, 2009]. There
are eight WWTPs that did not discharge to a SPARROW identified stream reach. In these cases, the nearest
downstream SPARROW reach is selected to serve as the receiving stream reach. For each stream reach that
is connected to a wastewater treatment plant, we obtain SPARROW model predictions of streamflow, TN
load (from point and nonpoint sources, the latter providing the vector y), and the transfer coefficient ti

[Hoos and McMahon, 2009]. These data are then used to calculate the spatially explicit pollution (i.e., TN)
loads throughout the river network, which provides the information necessary to determine the values in
matrix A (the database of WWTPs is given in supporting information 3).

The final set of parameters is the set of trading ratios. For this analysis, we consider a particular set of trad-
ing ratios that is consistent with the CWA and TMDL regulation. Suppose the unit of analysis is the estuary.
Let ri5ti . This implies that the trading ratios are equal to the transfer coefficients to the estuary. Trade
between any two WWTPs will keep the total nitrogen load (in mass) at the estuary equal to a constant.
Thus, any market design with these trading ratios will meet a TMDL set for the estuary. This gives us a realis-
tic benchmark from which to compare trading ratios with one-for-one trading. However, one-for-one trad-
ing may violate the TMDL at the estuary.

2.4. Scenarios Analyzed
We use the coupled hydrologic-economic model to assess alternative scenarios related to policy implemen-
tation, specifically the issue of scale at which the regulatory policy would be implemented. For a given
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combination of the parameters b and g, we quantify the total costs (damages plus abatement costs) of six
different scenarios for two different policy systems (one-for-one and trading ratios). The first scenario uses
the genetic algorithm to determine the optimal trading design. The remaining five scenarios correspond to
the market designs analyzed by the simple search algorithm. First is the no-trading baseline. Here there is
no trading, so WWTPs have to expend the costs necessary to reduce their own emissions to the endowment
wi. This also corresponds to the smallest scale for the market. This scenario mimics the total costs that we
would expect under the no-trading implementation of the CWA. Next are the four constrained full trading
scenarios (none, state, river basin, and subbasin). The unconstrained full trading scenario corresponds to
the largest scale for the market; all WWTPs are together in one single market.

3. Results

3.1. Effect of Political Boundary
Limiting trading to within-state boundaries always has higher costs than at least one of the other full trad-
ing cases (Table 1). This suggests that states may wish to take a cooperative approach to developing water
quality trading systems. Because the state constraint is never optimal, and it does not nest within the other
constraints, we do not include it in any subsequent analysis.

3.2. One-For-One Versus Trading Ratios
Holding scale constant, for all parameter values we consider, trading ratios lead to lower costs than one-for-
one trading (Table 1 and Figure 2), but the differences between the two trading rules are small. In addition,
the second algorithm identifies the same optimal scale for trading under both trading rules, with only one
exception (b 5 86,250, g 5 20). One-for-one trading at the optimal scale often leads to lower expected total

Table 1. Total Costs (in Millions of Dollars per Year) Using the Genetic Algorithm to Find Optimal Market Designs and Full Trading With
Different Scale Constraintsa

b g
Trading

Rule
No

Trading

Genetic Algorithm
for Optimal

Trading

Full Trading,
No

Constraints

Full Trading,
State

Constraints

Full Trading,
Basin

Constraints

Full Trading,
Subbasin

Constraints

30,000 5 One-for-one 10.664 9.818 (8%) 9.871 (7%) 9.882 (7%) 9.842* (8%) 9.948 (7%)
Trading ratio 9.817 (8%) 9.864 (8%) 9.864 (8%) 9.830* (8%) 9.918 (7%)

10 One-for-one 13.343 9.912 (26%) 9.925* (26%) 10.010 (25%) 10.002 (25%) 10.437 (22%)
Trading ratio 9.897 (26%) 9.912* (26%) 9.936 (26%) 9.963 (25%) 10.324 (23%)

20 One-for-one 24.061 10.136 (58%) 10.141* (58%) 10.519 (56%) 10.639 (56%) 12.394 (48%)
Trading ratio 10.105 (58%) 10.107* (58%) 10.226 (57%) 10.497 (56%) 11.946 (50%)

48,750 5 One-for-one 16.614 15.778 (5%) 15.952 (4%) 15.942 (4%) 15.821* (5%) 15.920 (4%)
Trading ratio 15.764 (5%) 15.936 (4%) 15.924 (4%) 15.803* (5%) 15.888 (4%)

10 One-for-one 19.293 15.964 (17%) 16.007* (17%) 16.070 (17%) 15.980 (17%) 16.410 (15%)
Trading ratio 15.938 (17%) 15.985* (17%) 15.997 (17%) 15.937 (17%) 16.294 (16%)

20 One-for-one 30.010 16.197 (46%) 16.226* (46%) 16.583 (45%) 16.620 (45%) 18.368 (39%)
Trading ratio 16.158 (46%) 16.182* (46%) 16.289 (46%) 16.472 (45%) 17.918 (40%)

67,500 5 One-for-one 22.448 21.618 (4%) 21.975 (2%) 21.934 (2%) 21.696* (3%) 21.786 (3%)
Trading ratio 21.6013 (4%) 21.945 (2%) 21.917 (2%) 21.671* (3%) 21.751 (3%)

10 One-for-one 25.128 21.773 (13%) 22.031 (12%) 22.064 (12%) 21.856* (13%) 22.276 (11%)
Trading ratio 21.714 (14%) 22.000 (12%) 21.990 (12%) 21.805* (13%) 22.157 (12%)

20 One-for-one 35.845 22.188 (38%) 22.254* (38%) 22.579 (37%) 22.497 (37%) 24.237 (32%)
Trading ratio 22.130 (38%) 22.196* (38%) 22.285 (38%) 22.341 (38%) 23.782 (34%)

86,250 5 One-for-one 28.172 27.352 (3%) 27.941 (1%) 27.861 (1%) 27.471* (2%) 27.549 (2%)
Trading ratio 27.328 (3%) 27.893 (1%) 27.843 (1%) 27.437* (3%) 27.510 (2%)

10 One-for-one 30.851 27.479 (11%) 27.998 (9%) 27.990 (9%) 27.631* (10%) 28.040 (9%)
Trading ratio 27.448 (11%) 27.944 (9%) 27.917 (10%) 27.571* (11%) 27.917 (10%)

20 One-for-one 41.569 27.969 (33%) 28.224* (32%) 28.509 (31%) 28.274 (32%) 30.003 (28%)
Trading ratio 28.012 (33%) 28.148 (32%) 28.214 (32%) 28.109* (32%) 29.544 (29%)

105,000 5 One-for-one 33.788 32.974 (2%) 33.851 (0%) 33.722 (0%) 33.149* (2%) 33.212 (2%)
Trading ratio 32.948 (2%) 33.782 (0%) 33.704 (0%) 33.104* (2%) 33.169 (2%)

10 One-for-one 36.468 33.110 (9%) 33.909 (7%) 33.852 (7%) 33.391* (9%) 33.704 (8%)
Trading ratio 33.070 (9%) 33.833 (7%) 33.779 (7%) 33.238* (9%) 33.576 (8%)

20 One-for-one 47.185 33.692 (29%) 34.139 (28%) 34.374 (27%) 33.954* (28%) 35.669 (24%)
Trading ratio 33.548 (29%) 34.039 (28%) 34.079 (28%) 33.778* (28%) 35.204 (25%)

aNumbers in parentheses show the savings relative to the no-trading case. One-for-one trading and trading ratios. Asterisks indicates
row minimum of constrained trading.
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costs than using trading ratios at full
scale (see for example b 5 30,000,
g 5 5). The genetic algorithm gener-
ally identifies slightly different opti-
mal market designs for one-for-one
trading versus the trading ratios
(Figures 3 and 4).

3.3. Constrained Full Trading
Versus No Trading
Moving from no trading to any of the
constrained full trading outcomes
decreased expected total costs (Table
1 and Figure 2). It is of interest to
break down this decrease in expected
total cost into its component parts.
Consider one-for-one trading. In the
most restrictive trading case of
within-subbasin trading compared to
no trading, the reductions in abate-
ment costs are several times the
increases in damages. For the model
parameters that value damages the
most (b 5 105,000) and minimize
abatement cost effects (g 5 5), going
from no trading to within-subbasin
trading increases damages by $0.3
million, but decreases abatement
costs by $0.9 million. In all other
cases, this effect is more pronounced.
For example, in the moderate case
(g 5 10; b 5 67,500), going from no
trading to within-subbasin trading
increases damages by $0.1 million
but reduces abatement costs by $3.0
million.

3.4. Savings With Scale: The Simple
Search Algorithm
For the simple search algorithm, we
determine which market design leads
to the lowest total cost (Table 1 and Fig-
ure 2). For example, consider the mod-

erate parameters (g 5 10, b 5 67,500) and one-for-one trading. Here total costs for the within-basin trading case
($21.9 million) are lower than total costs for the unconstrained design ($22.0 million) and the within-subbasin trad-
ing case ($22.3 million). For one-for-one trading, out of the 15 parameter value sets, the simple search algorithm
identifies the within-basin trading design as optimal for nine of those sets, and the unconstrained design as opti-
mal for six sets. For trading ratios, the simple search algorithm identifies the within-basin trading design as optimal
for 10 sets, and the unconstrained design as optimal for five sets. Generally speaking, as the abatement cost
parameter increases, the differences in total costs across market designs increase, so that identifying the proper
scale for trading becomes more important.

3.5. Performance of the Simple Search Algorithm and the Genetic Algorithm
Surprisingly, the optimal market design identified by the genetic algorithm generated only modest addi-
tional cost savings compared to the design identified by the simple search algorithm using watershed-scale

Figure 2. Damages and abatement costs as a function of b, g, and spatial scale of
market under one-for-one trading rule.
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constraints, at most saving $0.26 million (Table 1). In other words, the simple procedure of selecting the
lowest cost one of the four constrained full trading scenarios compared favorably to the low cost market
design identified by the genetic algorithm that evaluated between 250,000 and 500,000 distinct market
designs. In addition, the genetic algorithm often creates nonintuitive trading zones. For example, in the
case of b 5 67,500, g 5 5 and one-for-one trading (Figure 3), the optimal trading result makes several indi-
vidual WWTPs unable to trade with others in the same basin. For the same parameters but using trading
ratios instead, the optimal trading result calls for a small zone in which WWTP from the Neuse basin are
paired with WWTP from the Tar Basin (Figure 4). Whether or not such nonintuitive groupings would be
readily adopted by regulatory agencies or accepted by the particular WWTP excluded from trading is ques-
tionable. For the conditions analyzed here, identifying the optimal design by employing the genetic algo-
rithm may not be justified as a regulatory alternative due to these limited cost savings and greater
computational and administrative complexity. Rather it may be better to use the simple search algorithm to
identify the best constrained full trading market design.

Figure 3. Market designs using genetic algorithm to find the optimal market designs assuming b 5 67,500 and (top) g 5 5 and (bottom)
g 5 20 and one-for-one trading. Note that the market designs developed under optimal trading can be nonintuitive; there are individual
WWTPs that are not allowed to trade with any other WWTPs, including those in their basin.
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3.6. Pareto Frontier
Up to this point, we have illustrated our results by varying the parameters of the model and identifying the
resulting changes in the optimal market designs. A complementary procedure is to vary the objective func-
tion itself, rather than the model parameters. In our case, this means that rather than using the standard
economic objective function equal to the simple sum of abatement costs and damages, we use an objective
function that is equal to the weighted sum of abatement costs and damages. The cost minimization proce-
dure is done repeatedly for a variety of the values of the weights. Plotting the various combinations of costs
and damages that result from this procedure gives the Pareto Frontier. We create the Pareto Frontier for
both trading ratios and one-for-one trading by varying the weight on abatement costs from 0 to 1 in steps
of 0.1 (Figure 5).

There is a region of high curvature in the frontier around the points at which approximately equal weight is
placed on abatement costs and damages. If the weights vary much from these central values, the optimal
solution tends toward either full trading (when there is greater weight on abatement costs) or no trading

Figure 4. Market designs using genetic algorithm to find the optimal market designs assuming b 5 67,500 and (top) g 5 5 and (bottom)
g 5 20 and trading ratios. Note that the market designs developed under optimal trading can be nonintuitive; there is a small grouping of
WWTPs in the Neuse and Tar that are allowed to trade.
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(when there is greater weight on dam-
ages). As the weight on abatement
costs approaches one, the objective
function essentially disregards dam-
ages, so the optimal solution has full
trading, which will ensure the lowest
abatement costs. Conversely, as the
weight on damages approaches one,
the objective function essentially disre-
gards abatement costs. Damages are
lowest when there is no trading, so this
is the optimal market design. This cor-
responds to the solution under the tra-
ditional application of the Clean Water
Act, which implicitly places a weight of
one on damages.

Notice that the frontier corresponding
to one-for-one trading is very close to
the frontier corresponding to trading
ratios. The reason for this is as follows.

When we move from one-for-one trading to trading ratios (keeping a fixed weight), we are implicitly placing
a bit more emphasis on damages and a bit less emphasis on abatement costs. Another way of making a
change like this would be to keep the type of trading fixed at one-for-one, but increase the weight on dam-
ages slightly. So, as can be seen in Figure 5, given a point on the trading ratio frontier, there is a point on
the one-for-one frontier that is quite close, but corresponds to a greater weight on damages.

4. Discussion, Limitations, and Further Work

We analyze a feasible and realistic water quality trading program. In addition, we utilize a water quality
model—SPARROW—that is empirically based and widely used for policy and management, allowing appli-
cations of our techniques to other basins. Our previous work has shown theoretically [Yates et al., 2013] and
experimentally [Schnier et al., 2014] that small markets such as those that emerge here (i.e., limited number
of participants) perform reasonably well compared to a competitive benchmark. Putting these regulatory,
hydrologic, and economic developments together produces a combined approach to generate policies and
analyses that were not previously available.

Our results show very clearly that allowing trading reduces total costs, often substantially, from a baseline
case of no trading. Beyond the gains from allowing trading, our analysis also shows that the gains by increas-
ing the scale of trading are modest compared with the gains made by simply allowing at least subbasin trad-
ing and that the basin scale for a water quality market is perhaps the most straightforward starting point for
trading programs; the size of these basins ranged from 4700 km2 in the Pasquotank to 25,400 km2 in the Roa-
noke, with an average size of 14,000 km2. The exception to this rule-of-thumb is when abatement costs were
quite large (simulated here by increasing values of g). If regulations on WWTPs are made more stringent (e.g.,
further reduction in total nitrogen permitted to be emitted), then abatement costs will inevitably rise, and the
gains to be made from adjusting the scale of water quality markets would be more significant. The Pareto
Frontier shows that when unequal weights are applied to abatement costs and damages, the solution is gen-
erally an extreme market design in which there is either full trading or no trading.

We consider one-for-one trading as well as trading ratios defined such that the total nitrogen load in the
estuary remains constant. Generally, we find only small differences between the two types of trading. Given
that the trading ratios that we utilize here satisfy TMDL regulation under the CWA, they are a natural focus
for current regulation. It may be possible, however, to find other ways to define the trading ratios that lead
to even lower total costs, albeit by risking violating TMDL water quality constraints. These trading ratios
would account for damages along the entire river network, not just at the estuary.

Figure 5. Pareto Frontier (with b 5 67,500 and g 5 10 for both trading ratios and
one-for-one trading). Arrows indicate outcomes for equal weights on damages
and costs.
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We do not explicitly include transactions costs in the analysis. Stavins [1995] presents a model of transac-
tions costs in a single permit market. In his model, transactions costs are paid by WWTPs and they are an
increasing function of the volume of trade. In our model, there are many markets. As the number of markets
increases, the volume of trade will decrease, which in turn will decrease the transactions costs paid by the
WWTPs. But the increase in the number of markets may increase the transactions costs paid by the regula-
tors that oversee the markets. Thus, the net effect of transactions costs on the optimal scale of the market
may be ambiguous—it may increase or decrease the optimal scale depending on which effect dominates.

Our results are predicated on the assumptions that WWTPs are willing and able to minimize the cost of com-
plying with water quality regulation and that they fulfill this objective by exploiting the opportunities to trade
in the market. There is some evidence that these assumption will not necessarily hold in actual programs
[Netusil and Braden, 2001; Hamstead and BenDor, 2010; Ribaudo and Gottieb, 2011; Nguyen et al., 2013]. To the
extent that this is true, it would suggest that the optimal scale of the market should shift toward fewer mar-
kets. This would help the WWTPs to reduce the compliance costs by providing greater scope for trading.

Our procedures should be directly applicable to cap-and-trade programs to address water pollution issues
in other geographical regions. In particular, our simple search algorithm—selecting the optimal scale by
evaluating a small number of constrained full trading scenarios—is relatively straightforward to implement
and yields market designs that are consistent with river basin geography. The data from SPARROW are avail-
able for all of the watersheds in the Southeast U.S. By simply adapting our parameters to these watersheds,
it is possible to determine the optimal scale of water quality markets in this entire geographic region. More
generally, one could also apply our approach to air pollution. Here it is perhaps less obvious how to imple-
ment the simple search algorithm, as airsheds may not have the hierarchical structure found in most water-
sheds. In this case, the genetic algorithm may provide more value than we found in our study, and the
sensitivity to scale may be much greater. Moreover, fewer market designs generated by the genetic algo-
rithm would seem illogical because of the approximate nature of airshed boundaries.

In sum, our analysis provides a generalizable approach to quantifying the effect of different spatial con-
straints on environmental markets when emissions are mixed by environmental processes and there are
corresponding spatially explicit damages. We find that allowing trading between WWTPs can reduce total
costs, even when including damages, and that the current implementation of compliance associations as
has been developed in North Carolina are appropriately scaled—river basins—to reduce abatement costs
while constraining damages. Allowing trading to occur at the river basin scale is an appropriate policy first
step, although there will need to be greater spatial scales allowed for trading as abatement costs increase.

References
Alexander, R. B., R. A. Smith, and G. E. Schwarz (2000), Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico,

Nature, 403, 759–601.
Boyd, J., D. Burtraw, A. Krupnick, V. McConnell, R. G. Newell, K. Palmer, J. N. Sanchirico, and M. Walls (2003), Trading cases, Environ. Sci. Tech-

nol., 37, 217–233.
Burtraw, D., D. Evans, A. Krupnick, K. Palmer, and R. Toth (2005), Economics of pollution trading for SO2 and NOx, Annu. Rev. Environ.

Resour., 30, 253–289..
Dales, J. (1968), Pollution, Property and Prices, Univ. of Toronto Press, Toronto, Ont., Canada.
Eheart, J. (1980), Cost-efficiency of transferable discharge permits for the control of BOD discharges, Water Resour. Res., 16, 980–986.
Eheart, J., E. Joeres, and M. David (1980), Distribution methods for transferable discharge permits, Water Resour. Res., 16, 833–843.
Fowlie, M., and N. Muller (2013), Market-based emission regulation when damages vary across sources: What are the gains from differen-

tiation?, Working Pap. 237, Energy Inst. at Hass., University of California at Berkeley, Berkeley, Calif.
Hamstead, Z., and T. K. BenDor (2010), Nutrient trading for enhanced water quality: A case study of North Carolina’s Neuse River compli-

ance association, Environ. Plann., C28, 1–17.
Hartmann, S. (1998), A competitive genetic algorithm for resource-constrained project scheduling, Nav. Res. Logistics, 45, 733–750.
Henry, D., N. Muller, and R. Mendelsohn (2011), The social cost of trading: Measuring the increased damages from sulfur dioxide trading in

the United States, J. Policy Anal. Manage., 30, 598–612.
Holland, J. H. (1975), Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial

Intelligence, Univ. of Michigan Press, Ann Arbor, Mich.
Holland, S., and A. Yates (2014), Optimal trading ratios for pollution permit markets, Working Pap. 19780, Univ. of N. C., Chapel Hill.
Hoos, A. B., and G. McMahon (2009), Spatial analysis of instream nitrogen loads and factors controlling nitrogen delivery to streams in the

southeastern United States using spatially referenced regression on watershed attributes (SPARROW) and regional classification frame-
works, Hydrol. Processes, 23, 2275–2294.

Hung, M., and D. Shaw (2005), A trading-ratio system for trading water pollution discharge permits, J. Environ. Econ. Manage., 49, 83–102.
Krysiak, F., and P. Schweitzer (2010), The optimal size of a permit market, J. Environ. Econ. Manage., 60, 133–143.
Lence, B., J. Eheart, and D. Brill Jr. (1998), Cost efficiency of transferable discharge permit markets for control of multiple pollutants, Water

Resour. Res., 24, 897–905.

Acknowledgments
Research funding was provided by NSF
grants CHN 0909275, 0908679, and
0909056, as well as the Property and
Environment Research Center (PERC).
J. R. Rigby assisted in the initial
development of the data set and
analysis. We would like to thank Shelia
Olmstead and seminar participants at
PERC for helpful comments.

Water Resources Research 10.1002/2014WR015395

DOYLE ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 13



Malueg, D., and A. Yates (2009), Bilateral oligopoly, private information, and pollution permit markets, Environ. Resour. Econ., 43, 553–572.
Montgomery, D. (1972), Markets in licenses and efficient pollution control programs, J. Econ. Theory, 5, 395–418.
Morgan, C., and A. Wolverton (2005), Water quality trading in the United States, Working Pap. 05–07, Natl. Cent. for Environ. Econ.,

Washington, D. C.
Morris, G. M., D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, and A. J. Olson (1998), Automated docking using a Lamarckian

genetic algorithm and an empirical binding free energy function, J. Comput. Chem., 19, 1639–1662.
Muller, N., and R. Mendelsohn (2009), Efficient pollution regulation: Getting the prices right, Am. Econ. Rev., 99, 1714–1739.
NCDENR (North Carolina Department of Natural Resources) (2001), Frequently Asked Questions About the Tar-Pamlico Nutrient Trading

Program, Raleigh, North Carolina. [Available at http://h2o.enr.state.nc.us/nps/FAQs9-01.prn.pdf.]
Netusil, N., and J. Braden (2001), Transaction costs and sequential bargaining in transferable discharge permit markets, J. Environ. Manage.,

61, 253–262.
Nguyen, N., J. Shortle, P. Reed, and T. Nguyen (2013), Water quality trading with asymmetric information, uncertainty, and transactions

costs: A stochastic agent-based simulation, Resour. Energy Econ., 35, 60–90.
Paerl, H. W., L. M. Valdes, J. E. Adolf, B. L. Peierls, and L. W. Harding (2006), Anthropogenic and climatic influences on the eutrophication of

large estuarine ecosystems, Limnol. Oceanogr. Methods, 51, 448–462.
Poor, P. J., K. Pessagno, and R. Paul (2007), Exploring the hedonic value of ambient water quality: A local watershed-based study, Ecol.

Econ., 60, 797–806.
Ribaudo, M., and J. Gottlieb (2011), Point-nonpoint trading—Can it work?, J. Am. Water Resour. Assoc., 47, 5–14.
Riggs, D. (1999), Market incentives for water quality, in The Market Meets the Environment: Economic Analysis of Environmental Policy, edited

by B. Yandle, chap. 7, Rowman and LittleField, Lanham, Md.
Sado, Y., R. N. Boisvert, and G. L. Poe (2010), Potential cost savings from discharge allowance trading: A case study and implications for

water quality trading, Water Resour. Res., 46, W02501, doi:10.1029/2009WR007787.
Schnier, K., A. J. Yates, M. W. Doyle, and J. R. Rigby (2014), Bilateral oligopoly in pollution permit markets: Experimental evidence, Econ.

Inquiry, 52(3), 1060–1079.
Stavins, R. (1995), Transactions costs and tradeable permits, J. Environ. Econ. Manage., 29, 133–148.
Stephenson, K., and L. Shabman (2011), Rhetoric and reality of water quality trading and the potential for market-like reform, J. Am. Water

Resour. Assoc., 47, 15–28.
Wainger, L. A. (2012), Opportunities for reducing total maximum daily load (TMDL) compliance costs: Lessons from the Chesapeake Bay,

Environ. Sci. Technol., 46, 9256–9265.
Walsh, P., J. Milon, and D. Scrogin (2011), The spatial extent of water quality benefits in urban housing markets, Land Econ., 87, 628–644.
Weitzman, M. (1974), Prices vs. quantities, Rev. Econ. Stud., 41, 477–491.
Williams, R., III (2003), Cost effectiveness vs. hotspots: Determining the optimal size of emission permit trading zones, working paper, Univ.

of Tex. at Austin, Austin.
Womble, P., and M. W. Doyle (2012), The geography of trading ecosystem services: Case study in stream and wetland mitigation banking,

Harvard Environ. Law Rev., 236, 229–296.
Yates, A., M. Doyle, J. R. Rigby, and K. Schnier (2013), Market power, private information, and the optimal scale of pollution permit markets

with application to North Carolina’s Neuse River, Resour. Energy Econ., 35(3), 256–276.

Water Resources Research 10.1002/2014WR015395

DOYLE ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 14

http://h2o.enr.state.nc.us/nps/FAQs9-01.prn.pdf
http://dx.doi.org/10.1029/2009WR007787

