29 research outputs found

    The absorption spectrum of short-lived isotopic variant of water, H₂Âč⁔O: Tentative detection at the Earth's atmosphere

    Get PDF
    A calculated infrared vibration–rotation spectrum of isotopically modified water, H215O, is presented. Oxygen-15 has a half-life of about 2 minutes and H215O may be formed in the atmosphere during thunderstorms as a result of photonuclear processes or when the atmosphere is irradiated by cosmic γ-rays. Variational nuclear motion calculations of vibrational and vibrational-rotational levels up to 25000 cm−1 and up to J = 10 in angular momentum are performed within the framework of the Born-Oppenheimer approximation using an accurate water potential function. The line shape parameters for H215O are estimated. Spectral ranges that are promising for the detection of H215O in the atmosphere are identified and a search for spectral signatures conducted. A spectral feature is tentatively assigned to the 752 (0 1 0) - 643 (0 0 0) line of H215O

    Daily Sampling of an HIV-1 Patient with Slowly Progressing Disease Displays Persistence of Multiple env Subpopulations Consistent with Neutrality

    Get PDF
    The molecular evolution of HIV-1 is characterized by frequent substitutions, indels and recombination events. In addition, a HIV-1 population may adapt through frequency changes of its variants. To reveal such population dynamics we analyzed HIV-1 subpopulation frequencies in an untreated patient with stable, low plasma HIV-1 RNA levels and close to normal CD4+ T-cell levels. The patient was intensively sampled during a 32-day period as well as approximately 1.5 years before and after this period (days −664, 1, 2, 3, 11, 18, 25, 32 and 522). 77 sequences of HIV-1 env (approximately 3100 nucleotides) were obtained from plasma by limiting dilution with 7–11 sequences per time point, except day −664. Phylogenetic analysis using maximum likelihood methods showed that the sequences clustered in six distinct subpopulations. We devised a method that took into account the relatively coarse sampling of the population. Data from days 1 through 32 were consistent with constant within-patient subpopulation frequencies. However, over longer time periods, i.e. between days 1
32 and 522, there were significant changes in subpopulation frequencies, which were consistent with evolutionarily neutral fluctuations. We found no clear signal of natural selection within the subpopulations over the study period, but positive selection was evident on the long branches that connected the subpopulations, which corresponds to >3 years as the subpopulations already were established when we started the study. Thus, selective forces may have been involved when the subpopulations were established. Genetic drift within subpopulations caused by de novo substitutions could be resolved after approximately one month. Overall, we conclude that subpopulation frequencies within this patient changed significantly over a time period of 1.5 years, but that this does not imply directional or balancing selection. We show that the short-term evolution we study here is likely representative for many patients of slow and normal disease progression

    Energy efficient sparse connectivity from imbalanced synaptic plasticity rules

    Get PDF
    It is believed that energy efficiency is an important constraint in brain evolution. As synaptic transmission dominates energy consumption, energy can be saved by ensuring that only a few synapses are active. It is therefore likely that the formation of sparse codes and sparse connectivity are fundamental objectives of synaptic plasticity. In this work we study how sparse connectivity can result from a synaptic learning rule of excitatory synapses. Information is maximised when potentiation and depression are balanced according to the mean presynaptic activity level and the resulting fraction of zero-weight synapses is around 50%. However, an imbalance towards depression increases the fraction of zero-weight synapses without significantly affecting performance. We show that imbalanced plasticity corresponds to imposing a regularising constraint on the L1-norm of the synaptic weight vector, a procedure that is well-known to induce sparseness. Imbalanced plasticity is biophysically plausible and leads to more efficient synaptic configurations than a previously suggested approach that prunes synapses after learning. Our framework gives a novel interpretation to the high fraction of silent synapses found in brain regions like the cerebellum
    corecore