
Sacramento, João and Wichert, Andreas and van 
Rossum, Mark C.W. (2015) Energy efficient sparse 
connectivity from imbalanced synaptic plasticity rules. 
PLoS Computational Biology, 11 (6). e1004265. ISSN 
1553-7358 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/49632/1/joao_publ.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution licence and may be 
reused according to the conditions of the licence.  For more details see: 
http://creativecommons.org/licenses/by/2.5/

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk


RESEARCH ARTICLE

Energy Efficient Sparse Connectivity from
Imbalanced Synaptic Plasticity Rules
João Sacramento*1, AndreasWichert1, Mark C. W. van Rossum2

1 INESC-ID & Instituto Superior Técnico, Universidade de Lisboa, Porto Salvo, Portugal, 2 Institute for
Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, United
Kingdom

* joao.sacramento@ist.utl.pt

Abstract
It is believed that energy efficiency is an important constraint in brain evolution. As synaptic

transmission dominates energy consumption, energy can be saved by ensuring that only a

few synapses are active. It is therefore likely that the formation of sparse codes and sparse

connectivity are fundamental objectives of synaptic plasticity. In this work we study how

sparse connectivity can result from a synaptic learning rule of excitatory synapses. Informa-

tion is maximised when potentiation and depression are balanced according to the mean

presynaptic activity level and the resulting fraction of zero-weight synapses is around 50%.

However, an imbalance towards depression increases the fraction of zero-weight synapses

without significantly affecting performance. We show that imbalanced plasticity corresponds

to imposing a regularising constraint on the L1-norm of the synaptic weight vector, a proce-

dure that is well-known to induce sparseness. Imbalanced plasticity is biophysically plausi-

ble and leads to more efficient synaptic configurations than a previously suggested

approach that prunes synapses after learning. Our framework gives a novel interpretation to

the high fraction of silent synapses found in brain regions like the cerebellum.

Author Summary

Recent estimates point out that a large part of the energetic budget of the mammalian cor-
tex is spent in transmitting signals between neurons across synapses. Despite this, studies
of learning and memory do not usually take energy efficiency into account. In this work
we address the canonical computational problem of storing memories with synaptic plas-
ticity. However, instead of optimising solely for information capacity, we search for energy
efficient solutions. This implies that the number of functional synapses needs to be small
(sparse connectivity) while maintaining high information. We suggest imbalanced plastici-
ty, a learning regime where net depression is stronger than potentiation, as a simple and
plausible means to learn more efficient neural circuits. Our framework gives a novel inter-
pretation to the high fraction of silent synapses found in brain regions like the cerebellum.
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Introduction
The brain is not only a very powerful device, but it also has remarkable energy efficiency com-
pared to computers [1]. It has been estimated that most of the energy used by the brain is asso-
ciated to synaptic transmission [2]. Therefore to minimise energy consumption, the number of
active synapses should be as low as possible while maintaining computational power [1, 3, 4].
The number of active synapses is the product of the activity and the number of synapses. Ener-
gy can thus be reduced in two ways: 1) by employing a sparse neural code, in which only few
neurons are active at any time, 2) by removing synapses leading to sparse connectivity, leaving
only few synapses out of many potential ones. This latter process is also called dilution of the
connectivity. Remarkably, during human development brain metabolism neatly tracks synapse
density, rapidly increasing after birth followed by a reduction into adolescence (e.g. compare
the data in [5] to [6]).

Most computational algorithms of learning, however, optimise storage capacity without tak-
ing energy efficiency into account (but see [3]) and as a result only limited agreement between
models and experimental data can be expected. The best studied artificial example of learning
is the perceptron which learns to classify two sets of input patterns. Despite its simplicity, re-
sults of perceptron learning are crucial as they for instance guide the design of recurrent at-
tractor networks [7–9]. Provided the task can be learned, the perceptron learning rule is
guaranteed to find the correct synaptic weights. The traditional perceptron learning algorithm
assumes that weights can have any value and can change sign. In that case a perceptron with N
synapses can on average learn 2N random patterns. At the maximum load the corresponding
weight distribution is Gaussian, i.e., the connectivity is dense and hence energy inefficient [10].
If one restricts the synapses to be excitatory, the capacity is halved [9, 11].

In this work we ask which learning algorithm maximises energy efficient storage, and thus
maximises the number of silent synapses while still being able to perform a learning task [3].
However, finding the weight configuration with the fewest possible (non-zero) synapses is a
combinatorial L0-norm minimisation task. This is in general a NP-hard problem [12, 13] and
thus difficult to solve exactly. Using the replica method from statistical mechanics it is possible
to calculate limits on the achievable memory performance with a fixed number of synapses
[10], but such methods do not yield insight on how to accomplish this. An earlier approach
prunes the smallest synapses after learning. If synapses are to be removed after learning, this
procedure is optimal [14, 15]. Yet, as we will show it is far better to incorporate a sparse con-
nectivity objective during the learning process.

Here we explore imbalanced plasticity as a simple and biologically plausible way to reduce
the number of required synapses and thus improve information storage efficiency. In many
memory models the amount of potentiation and depression are precisely matched to the statis-
tics of the neural activity [16–19], but here we deliberately perturb the optimal plasticity rule
by introducing a bias towards depression. This imbalanced plasticity finds weight configura-
tions that require less functional synapses and that are thus more energy efficient.

Results

The model
We consider a recognition task from positive examples [20–22]. The perceptron should learn
to give a response whenever a sample from a given category is presented. In contrast to the
standard perceptron algorithm, which ‘unlearns patterns’ for which the neuron should not be
active, the synapses are not modified for negative samples. It has been argued that this setup is
relevant to biology in particular when the set of negative samples is very large and/or its
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statistics unknown [22]. For instance, one might want to train a neuron to recognise fruits, but
not update the synapses for all other objects. This setup is also relevant when studying rein-
forcement learning, where learning is gated by reward feedback elicited by positive samples. Fi-
nally, it resembles the one-class support vector machine used in statistical learning, which
detects whether a sample belongs to a class and which has applications in anomaly detection
[23, 24].

The setup is illustrated in Fig 1. A single postsynaptic neuron calculates the weighted sum of

its N excitatory inputs and compares it to a positive threshold y
ffiffiffiffi
N

p
. Whenever h ¼PN

i¼1 wixi � y
ffiffiffiffi
N

p
is non-negative, the perceptron fires. The inputs xi are randomly chosen to

be -1 or +1 with equal probability, and independently of the other inputs (see below for exten-

sions). The
ffiffiffiffi
N

p
in the threshold is a mathematical convenience that ensures scaling of the sys-

tem as the number of inputs is varied [11, 25].
During learning the neuron is provided with a set of K positive patterns, x1, . . ., xk, . . ., xK.

As in the standard perceptron, we cycle through the set of patterns until the task is learned.
The goal of the perceptron is to ‘fire’ for all these patterns. This should be contrasted to setups
in which samples are presented only once (one-shot learning), which generally lead to a lower
capacity [25]. We assume that initially all weights wi are zero (tabula rasa). The learning rule is
as follows: whenever a positive pattern is presented and only if it does not lead to postsynaptic
activity, the synapse is updated. For high inputs, i.e., xi = 1, potentiation occurs

Dwþ
i ¼ a½1�YðhÞ�; ð1Þ

where Θ(�) is the Heaviside step function which is zero if its argument is negative and one oth-
erwise, and a� 1 is the potentiation rate. Similarly, when an input xi is low, the synapse de-
presses

Dw�
i ¼ �b½1�YðhÞ�; ð2Þ

where b is the amount of depression. Depression is followed by rectification so that all synapses
remain excitatory, wi � 0 [26–30]. If the pattern does already lead to firing of the perceptron,

Fig 1. Diagram of our single neuron setup. A group ofN input presynaptic neurons are connected to a
single postsynaptic neuron. The input activity can be low, xi = −1, or high, xi = 1. The postsynaptic neuron
performs a weighted sum of the inputs and fires whenever that sum is larger than a threshold y

ffiffiffiffi
N

p
, otherwise

it remains quiet. Each synapsewi is adjusted as a function of the input activity so that the neuron remembers
a set of previously seen patterns. Ideally, only these patterns should trigger the neuron; all other patterns
should not.

doi:10.1371/journal.pcbi.1004265.g001
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no synapse is altered. This stop-learning condition is also present in a standard perceptron;
possible biophysical mechanisms are discussed in [31].

For the simple, random pattern statistics used here, the non-negativity constraint limits the
maximal amount of patterns that can be learned to Kmax = N [9, 11], which is half of the num-
ber of patterns an unconstrained perceptron can learn. Below this limit the learning process
finishes with high probability in a number of steps that is polynomial in N. We define the
memory load α = K/N, which becomes αmax = 1 at the maximal load in the balanced case.

Imbalancing plasticity promotes sparseness
Unlike the traditional perceptron rule, we allow for distinct amounts of potentiation and de-
pression. By introducing imbalance in favour of depression the learning dynamics is biased to-
wards the hard bound of the weight at zero. We rewrite the plasticity rule using the learning
rate ε� (a+b)/2 and an imbalance parameter λ� (b−a)/2ε. Provided the synapse does not hit
the zero bound, the weight update is

Dwi ¼ �½1�YðhÞ�ðxi � lÞ: ð3Þ
The parameter λ is zero for balanced learning; depression is stronger than potentiation if
0< λ� 1. We find somewhat improved faster learning when we also depress even when the
pattern has already been learned, i.e.

Dwi ¼ �f½1�YðhÞ�ðxi � lÞ �YðhÞlg: ð4Þ
For that case it can be shown that the learning dynamics minimises the energy function

E ¼
XK
k¼1

y
ffiffiffiffi
N

p
�
XN
i¼1

wix
k
i

" #
þ
þ l
XN
i¼1

wi; ð5Þ

where [�]+ denotes rectification. The first term of the energy sums over all patterns and pro-
motes low false negative rates; it is zero if the perceptron fires, while it attributes a cost propor-
tional to the distance to the firing threshold whenever a pattern is not yet learned. The second
term acts as a linear regulariser; the depression-potentiation imbalance λ penalises synaptic

weight configurations that have large linear norms jwj �PN
i¼1 wi. The regularisation term has

a simple interpretation, as it is proportional to the mean synaptic weight, jwj = Nhwi. The plas-
ticity rule, Eq 4, minimises this energy by performing a stochastic sub-gradient descent [32],
projected onto the subspace {w: wi� 0, i = 1, . . ., N}.

Rewriting the learning rule as the minimisation of the energy Eq (5) shows explicitly why
introducing imbalance towards depression promotes weight sparseness. In linear regression
and classification, optimising over regularised energy functions that penalise the L1-norm

kwk1 �
PN

i¼1 jwij of the weights is well-known to induce sparseness [33–35]. Below the critical
load αmax the weight configuration with minimal linear norm is known to be sparse [27]. Thus,
the learning rule Eq (4) with imbalance λ> 0 will try to find solutions that satisfy the learning
conditions but that are sparser than those obtained when λ = 0.

While the linear norm constraint promotes sparseness, it is not guaranteed to produce the
sparsest possible solution. The true optimisation problem would be to minimise the L0-pseu-
do-norm jjwjj0. The L0-pseudo-norm simply counts the number of non-zero synapses. Howev-
er, this leads to a difficult NP-hard combinatorial optimisation task [12, 13]. Instead,
optimising under the L1-norm constraint is a convex relaxation of the original problem for
which efficient computer algorithms exist (e.g. [36]). Moreover, imbalancing plasticity has the
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advantage of being an online procedure that only requires tuning the potentiation and depres-
sion event sizes and is thus biologically plausible.

Information and efficiency
Ideally our perceptron learns all examples, and minimises the false positive rate. To character-
ise the performance we present the perceptron with learned samples and lures (other random
patterns), both presented with equal probability. The mutual information between the class of
the input pattern and the perceptron’s output on a given trial is

I ¼
X
x2fp;lg

X
r¼0;1

PðxÞPðrjxÞ log 2

PðrjxÞ
PðrÞ ; ð6Þ

where P(x) = 1/2 is the probability that the test pattern is a positive pattern (p) or negative lure
pattern (l), P(r) is the probability that the perceptron remains silent or fires, and P(rjx) is the
conditional probability that we observe a given response given the true pattern class.

The information can be expressed in terms of the false positive rate p01 and the false nega-
tive rate p10. Below the critical capacity (α� αmax), the positive samples are recognised perfect-
ly after learning, i.e. there are no false negatives (p10 = 0), so that the information is determined
by the false positive rate only. As we have 2K trials, the total information normalised per syn-
apse, C ¼ 2K

N
I, equals

C ¼ 2K
N

1� 1

2

h
ð1þ p01Þ log 2ð1þ p01Þ � p01 log 2p01

i� �
: ð7Þ

Although this type of information calculation is common, we note that testing with equiproba-
ble lures and learned patterns is somewhat sub-optimal in terms of information [37]. For the
one-class perceptron, testing exhaustively with all 2N−K possible lures gives about 60.6% more
information when p01 = 1/2 with a weak dependence on p01.

As the mutual information does not take energy efficiency into account, we consider a re-
cently suggested capacity measure that includes the sparseness of the final weight configuration
[3]. Thememory efficiency Smeasures the information per non-zero synapse by normalising
the information to the fraction of non-zero synapses F,

S ¼ C
F
: ð8Þ

Memory efficiency is thus measured in bits per functional synapse. Learning rules that achieve
high information C using few resources will have high efficiency. If one assumes that a non-
zero synapse has a certain energy cost (independent of synaptic weight) and a zero synapse has
none, the memory efficiency Smeasures the energy cost of the stored memory.

Imbalanced plasticity improves memory efficiency
A variant of the sign-constrained perceptron convergence theorem (see Methods) shows that
the learning algorithm Eq 3 converges below a critical imbalance λmax(α) that depends on the
memory load α. In computer simulations we focus on the two extreme cases, i.e., balanced
(λ = 0) and maximally-imbalanced λ = λmax(α) plasticity. In principle it is possible to find the
maximum imbalance by trying various values of λ and checking convergence of the learning
process. However, it is much quicker to use that the problem is equivalent to learn the patterns
while minimising the linear norm jwj, see Eq 5. This was done with a linear programming solv-
er (see Methods) which requires no manual search for the maximal imbalance.
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For strongest depression (λ = λmax), the information C is only slightly below the information
of balanced learning, Fig 2A (magenta vs. blue curve). However, imbalanced plasticity provides
a large increase in memory efficiency S, Fig 2B. The reason is that the learning dynamics con-
verges to synaptic configurations with a considerably larger number of silent synapses, Fig 2C.
As the memory load α increases, the efficiency approaches that of the balanced solution. This is
expected; by increasing the task difficulty we are imposing additional constraints on the

Fig 2. InformationC in bits per synapse (bps), memory efficiency S in bits per functional synapse (bpfs) and the fraction of silent synapses 1−F as
a function of the memory load α = K/N. Results from a simulation with N = 1000 synapses. Shown are: balanced learning where depression equals
potentiation (λ = 0); maximal imbalance learning; the maximal-information solution found with offline quadratic programming (QP); minimal-value synapse
deletion, where all weights below some threshold are set to zero; and random pruning. The two latter rules were set to delete the same number of synapses
as imbalanced learning. The results for online learning were obtained under a large threshold (θ = 1, learning rate ε = 1/N) to maximise information (see
Methods). A. Information. Imbalanced plasticity leads to a small information decrease and significantly outperforms thresholded pruning. Random deletion
performs very poorly. Truly maximising information (QP) gives only a slight improvement in performance. B. Memory efficiency (information per non-zero
synapse). In particular at low α, the imbalanced perceptron finds sparser weight configurations, boosting the memory efficiency. The curves converge as the
critical loading α = 1 is approached. The maximal information solution (QP) is more efficient than balanced learning, but still inferior to imbalanced learning.C.
The fraction of silent synapses. Balanced online learning (λ = 0) under a large threshold always leads to the appearance of silent synapses, due to the
imposed hard bound at zero together with the large firing threshold. Imbalanced plasticity significantly increases sparseness, especially at lower memory
loads. QP learning leads to a few more zero-weight synapses compared to balanced learning, the fraction of which remains close to 50% irrespectively of the
memory load.

doi:10.1371/journal.pcbi.1004265.g002
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synaptic weights. As a result the volume of the solution space shrinks and the constraint on the
mean weight has to be relieved, therefore leading to smaller gains in memory efficiency. As α
approaches its critical value, the space of solutions collapses to a single point, i.e., no additional
constraints can be imposed at critical capacity and λmax = 0 [7].

We also considered alternative learning algorithms: first, a minimal-value pruning rule,
where all weights below a certain threshold are set to zero after learning has converged. We set
the deletion threshold of the offline pruning algorithm to produce the same number of zero-
weight synapses as the imbalanced solution. This is optimal in the one-shot learning case [14,
15]. In this case we find a more pronounced loss of information and, interestingly, almost no
efficiency increase (dark green curve). The superiority of imbalancing makes intuitive sense:
imbalanced plasticity is an online protocol that accommodates for sparseness constraints by re-
distributing weights dynamically, while the pruning procedure is performed after learning and
does not allow for further re-adjustments. Finally, we also tried random pruning after learning,
which as expected, performs very poorly (light green curve).

For completeness, we compared these results to the solution that maximises information
without requiring sparseness. The optimisation can be formulated as a quadratic programming
(QP) problem (see Methods), and the best solution can be found with a high performance bar-
rier method convex optimiser [38]. This algorithm clearly lacks biological plausibility, and
does not provide a significant improvement in information over balanced (λ = 0) online learn-
ing, Fig 2A. In other words, perceptron learning works well for our problem, provided that the
firing threshold θ is large enough (see Methods). Under QP the fraction of silent synapses
slightly increases to around 50%, Fig 2C, which leads to a moderate improvement in memory
efficiency, Fig 2B. Finally, one can resort to the min-over learning rule, which only applies a
weight update for the pattern that evokes the minimal output h [39]. The synaptic weights are
guaranteed to asymptotically converge (as θ!1) to the QP solution and unsurprisingly the
information matches that which is obtained with the quadratic solver. This procedure is diffi-
cult to reconcile with biology as well, as each single learning iteration requires access to
every pattern.

Synaptic weight distributions
The learning algorithm and the threshold setting also determine the shape of the synaptic
weight distribution. This distribution is of importance, as it can be compared to experimental
data. For instance, the electro-physiologically determined synaptic weight distribution was
used to link Purkinje cell learning to perceptron learning theory [28, 40]. We recorded the ob-
tained synaptic weight histograms (see Methods), averaged over many trials (each with differ-
ent pattern sets). While collecting results across trials is strictly only approximates the synaptic
weight density, it is a good estimate of the actual observed distribution for a single realisation
of the system, since the underlying weight density is strongly self-averaging [27, 28].

Balanced learning (λ = 0) leads to an approximately exponential distribution, Fig 3A. Inter-
estingly, although the QP solution did not increase information compared to online balanced
learning (Fig 2A), the shape of the distribution of synaptic weights changes considerably (cf.
Fig 3A and 3B). At any memory load α� αmax the fraction of zero-weight synapses always re-
mains close to 50% while the remaining weights assume a truncated Gaussian distribution cen-
tred around w = 0. The problem that we are dealing with is thus not ‘intrinsically sparse’ in
weight space. This should be contrasted with the non-negative perceptron classifier with
0/1-coded inputs that was recently studied [28–30]. In that case, maximising information in
the presence of postsynaptic noise automatically leads to sparse weight configurations
(F< 0.5), provided that the memory load is below the critical point. Interestingly, at the critical
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load, the distribution becomes identical to the truncated Gaussian that we report here as the
optimal one.

Imbalanced plasticity boosts the fraction of zero-weight synapses and stretches the weight
distribution, Fig 3C. Although the mean weight is lower due to the increased sparseness of the
weight configuration, the surviving synapses are stronger. This can be understood through the-
oretical arguments (see Methods). It can be shown that learning rules that lead to a large mini-

mum postsynaptic sum,mink

PN
i¼1 wix

k
i (together with a normalisation condition that fixes the

Euclidean norm jjwjj2) give better recognition performance against lures. As some synapses are
zeroed-out, specific strengthening keeps the postsynaptic sum large for learned patterns.

Fig 3. Synaptic weight histograms, information andmemory efficiency at lowmemory load (α = 0.1). Data obtained averaging over a thousand
simulations (N = 1000).A. For balanced learning the distribution is stretched due to the optimised learning (large threshold choice θ = 1 under a small
learning rate ε = 1/N). As with the non-negative perceptron classifier [28], a large number of zero synapses appear.B. Maximal-information solution obtained
via quadratic programming, with the objective set at minimising the Euclidean norm jjwjj2. The quadratic objective function leads to a hemi-Gaussian weight
distribution, again with a large fraction of silent synapses arising from the non-negativity constraint. C. Minimal linear norm solution (largest imbalance). As
the learning task is ‘easy’ (low α), strong depression leads to a highly sparse synaptic configuration.

doi:10.1371/journal.pcbi.1004265.g003
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The non-zero weight distribution for maximal imbalance can be reasonably fitted to a com-
pressed exponential P(w)* exp(−cwβ), with an exponent β = 1.4. The two-class perceptron
model yields β = 2 (a truncated Gaussian) at critical capacity [28]. The best fit of this type of
distribution to the cerebellar data published [40] has an exponent β = 0.7±0.4, however it
should be noted that the limited amount of data allows for a broad range of possible β.

Homeostatic excitability regulation and sparse codes
Next we explore if our findings depend on the details of the coding. So far we assumed the in-
puts were -1 or +1, as in earlier studies of the non-negative perceptron [9, 26, 27]. This is hard
to imagine biologically, unless an inhibitory partner neuron is introduced [19, 31, 41, 42]. An
arguably more faithful biological model is obtained by representing low inputs as silent, xi = 0
[16, 19, 20, 28, 43]. Furthermore, we wish to generalise to a case where the probability for a
high input is variable rather than fixed to 1/2.

The capacity of the above model can be fully recovered without drastically changing the
neural circuit. In fact, two ingredients suffice: one has to rebalance the plasticity rules as a func-
tion of the activity level f, and, secondly, introduce a dynamic mechanism that adapts the firing
threshold as a function of the linear norm jwj. With these modifications, both the information
C and the memory efficiency S are exactly identical to those reported in the previous section.

First, we generalise the model to deal with an arbitrary coding level f. When f = 1/2, the orig-
inal model is recovered up to scale factors. To preserve the zero mean, we consider activity pat-
terns that are coded as zi 2 {−f,1−f}, with P(zi = 1−f) = f. Stochastic sub-gradient descent
dynamics over the energy Eq (5) gives the adjusted potentiation rule for high inputs

Dwþ
i ¼ �fð1� f � lÞ½1�YðhÞ� � lYðhÞg; ð9Þ

while depression at low inputs becomes

Dw�
i ¼ �f�ðf þ lÞ½1�YðhÞ� � lYðhÞg; ð10Þ

followed by rectification. Here h ¼PN
i¼1 wizi � y

ffiffiffiffiffi
fN

p
.

Next, a zero-mean input zi is related to 0/1 coding by the simple relation xi = zi+f, xi 2 {0,1}.
Therefore the net input of the neuron in response to a 0/1 pattern can be written through a
change of variables as

h ¼
XN
i¼1

wixi � f
XN
i¼1

wi � y
ffiffiffiffiffi
fN

p
¼
XN
i¼1

wixi � g; ð11Þ

where we defined a new threshold variable

g ¼ f
XN
i¼1

wi þ y
ffiffiffiffiffi
fN

p
:

Note that this threshold grows during learning so as to compensate the increasing weights.
This can be viewed as a kind of homeostatic adaptation process: as learning progresses, the
neuron self-regulates so that it becomes harder to reach the firing threshold. While the incor-
poration of an auxiliary feed-forward inhibition circuit has been used in related models to in-
crease capacity in the presence of non-negativity constraints [19, 31, 41, 42], the mechanism
here does not directly depend on the precise pattern x of the presented input. It thereby obvi-
ates the need for coordinated plasticity with a partner interneuron as well as for precise tempo-
ral integration of inhibitory signals. Instead it could be implemented sub-cellularly without the
aid of additional circuitry. Using the adaptive threshold, the information becomes independent

Energy Efficient Sparse Connectivity from Imbalanced Plasticity

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004265 June 5, 2015 9 / 24



of the input coding level f (Fig 4 solid line), while it decreases when the threshold is fixed
(dashed curve). We note that, unlike for two-class learning, for one-class learning a high
threshold suffices to implement a large-margin classifier.

An alternative route to recover capacity is to employ sparse coding, a finding that has been
previously reported for the non-negative perceptron in a more general classification framework
[43]. Here the asymptotic situation is rather simple, because as f! 0 and N!1 the original
model is recovered and performance at low f approaches the ideal performance, Fig 4.

Input correlations
Activity correlations can severely limit the performance of learning rules, depending on the
task and the nature of the correlations. For instance, in supervised memory tasks, Hebbian
learning deteriorates under almost any type of correlation in the patterns [25, 44]. In contrast,
more powerful plasticity rules equipped with a stop-learning condition, like the perceptron
rule, are resistant to spatial input correlations [45], and can in some cases take advantage of
input-output redundancies to store more patterns [29, 46].

To test the robustness of imbalanced plasticity to correlated activity we draw random pat-
terns from a generative model that induces spatial presynaptic activity correlations (character-
ised by a parameter g, see Methods, [21, 45]). We first correlated the patterns such that the

Fig 4. InformationC in bits per synapse for binary (0 or 1) input patterns as a function of the input
coding level f. Average values for the dynamic-threshold model, where h is given by Eq 11, and average
values obtained with a fixed threshold θfN— note the threshold scaling with fN instead of

ffiffiffiffiffi
fN

p
due to the 0/1

input activity. Potentiation and depression were balanced (Eqs 9 and 10) to match the coding level. While the
adjusted model is insensitive to f, the information achieved by the uncorrected model approaches that of the
original one for sparse input patterns. Simulations performed at moderate memory load α = 0.5 and system
sizeN = 1000.

doi:10.1371/journal.pcbi.1004265.g004
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mean activity remained homogeneous across the inputs. Consistent with the standard two-
class perceptron without synaptic sign-constraints [45], neither the imbalanced learning, nor
the balanced rule are affected by input correlation, Fig 5A.

Next, we implemented a variation of the generative model that introduces heterogeneities in
the input activity rates where some inputs tend to be active more often than others. Interesting-
ly the imbalanced rule is robust to this type of correlation, Fig 5B. Whereas the efficiency of the
other rules drops off, the efficiency of the imbalanced rule remains constant. The intuitive ex-
planation is that the high activity synapses effectively experience balanced net potentiation and
depression for non-zero imbalance λ. The imbalanced rule finds a high-information solution
by silencing and ignoring the low activity inputs and subjecting the remaining synapses to the
usual imbalanced learning protocol.

Robustness to noise
So far we have considered the recall of noise-free patterns, however, in the light of the many
noise sources in the nervous system, it is important to confirm the noise robustness of
the results.

First, we introduce transmission failures and spontaneous presynaptic activity, and test the
learning with corrupted patterns, denoted ~x. An active input is switched off with probability
d10 ¼ Pð~xi¼0jxi¼1Þ, while an otherwise silent presynaptic input fires with probability
d01 ¼ Pð~xi¼1jxi¼0Þ. The lures are generated with a matching mean activity, hxi = (1−f)δ01+f
(1−δ10), to ensure that lure statistics match the patterns.

We examined the performance of the balanced and maximally-imbalanced rules, as well as
thresholded synaptic pruning, under this stochastic synapse model, Fig 6A and 6B. The infor-
mation of all three rules decreases smoothly as the input distortion increases. For dense pat-
terns, f = 1/2, the efficiency of the maximally-imbalanced rule is initially the most affected by
the introduction of noise, and becomes comparable to the thresholded deletion one for higher

Fig 5. Memory efficiency vs input correlations. A. In case the mean input remains homogeneous, the three learning algorithms considered— balanced
(λ = 0), maximally-imbalanced (λ = λmax) and maximal-information (QP)— are unaffected by spatial presynaptic activity correlations.B. In case of heterogenous
inputs, the balanced rule (λ = 0) and the QP algorithm deteriorate. Imbalanced plasticity performs well, however, as it regularises the high-activity synapses
while ignoring the remaining ones. As a result the memory efficiency of the maximally-imbalanced solution is approximately constant. Data obtained by
averaging a hundred independent simulations at α = 0.1, f = 1/2, andN = 1000 synapses.

doi:10.1371/journal.pcbi.1004265.g005
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noise levels. For sparse patterns, Fig 6B, the efficiency is affected similarly by the noise for all
three rules. The maximally-imbalanced and the thresholded solutions remain more efficient
than balanced plasticity.

Next, we examined the role of postsynaptic current noise by adding a zero-mean Gaussian
variable to the postsynaptic current h [28], the variance of which sets the noise intensity, Fig
6C. In contrast to the above, the magnitude of the random contributions is decoupled from the
actual learned weights. For this noise model, the relative information reduction is comparable
for both balanced and imbalanced plasticity.

Fig 6. InformationC andmemory efficiency S versus noise level. The three solutions— balanced (λ = 0) and maximally-imbalanced (λ = λmax) plasticity,
and thresholded synaptic pruning—were obtained once for a single set of K = 0.1N positive patterns (N = 1000 synapses) and then tested against a large
number 100K of distorted learned patterns and lures, generated for each noise level. The firing threshold of each solution is numerically optimised to
maximise information. The presynaptic noise level varied under the setting δ01 = δ10 = δ (see main text for details). The scale of the postsynaptic noise
standard deviation was set by normalising the weights to give a unit size mean response to learned patterns. A. For dense patterns, f = 1/2, the falloff in
information is steeper for imbalanced plasticity than thresholded deletion. The two solutions remain more efficient than balanced learning for all noise levels.
B. For sparse input patterns, f = 0.01, the balanced solution also suffers and as long as the information is not practically zero, both the maximally-imbalanced
and the thresholded pruning rules are more efficient than the balanced one.C. Results for a postsynaptic noise model, where the current h is perturbed with
an additive zero-mean Gaussian random variable with standard deviation σ. As the postsynaptic noise does not depend on the actual learned weights,
imbalanced and balanced plasticity show similar noise robustness profiles.

doi:10.1371/journal.pcbi.1004265.g006
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Tuning of the imbalance parameter
In the above the imbalance parameter λ was optimised for automatically in an unbiological
fashion. To examine suboptimal values we simulated learning while raising λ towards the criti-
cal imbalance λmax, above which the learning algorithm no longer converges. The memory task
difficulty, set by the memory load α, limits the allowed imbalance (see Methods). Indeed, we
find that λmax shrinks as α increases, Fig 7. Akin to the margin parameter which sets the noise
robustness of the non-negative perceptron [28, 29], the actual λmax depends on the exact set of
patterns the neuron should learn. However, for random patterns drawn from the same distri-
bution, the system is self-averaging as N!1 [7]. In simulations we observe a similar behav-
iour across different runs, although some finite-size effects are still apparent in networks of
moderate dimension, Fig 7 (rightmost curves). In other words, λmax can be reasonably estimat-
ed independent of the precise pattern set. Finally note that the figure implies that the parameter
can be set conservatively, based on the maximum number of patterns to be expected. Of course,
the efficiency gain is not maximised in this case, but still better than the balanced case.

Discussion
The brain’s energy consumption is thought to be dominated by synaptic transmission [2, 47,
48]. We have considered how synaptic learning rules can lead to sparse connectivity and thus
to energy efficient computation. We studied a one-class perceptron problem in which a neuron
learns from positive examples only. One-class learning is relevant for learning paradigms such

Fig 7. Memory efficiency S increases with imbalance λ. Efficiency is a function of imbalance for a given
set of patterns. The curve stops when the learning dynamics no longer converges. Dashed horizontal lines
indicate the corresponding efficiency values achieved by the linear programming solver (see Methods). The
results for five independent runs at α = 0.1 (rightmost curves) are very similar, although finite-size effects are
visible as the number of inputs is not particularly large. As predicted, the critical imbalance λmax decreases
with the memory load α. The learning rule only updated the synapses for patterns that did not yet lead to firing
activity, Eq 3. Simulations of a neuron withN = 1000 synapses and coding level f = 0.01.

doi:10.1371/journal.pcbi.1004265.g007
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as recognition and reinforcement learning. One-class learning is also well-known in machine
learning [24, 49, 50]. The two-class perceptron requires sampling the space of ‘negative’ pat-
terns that is necessarily large under a sparse firing constraint [22] and secondly, it requires re-
versing plasticity (‘unlearning’) whenever appropriate. For instance, it is unclear how can a
pattern be actively unlearned under spike-timing-dependent plasticity [51]. In contrast to two-
class perceptrons, negative samples in the one-class perceptron do not cause plasticity which
leads to further energy saving as plasticity itself is an energetically costly process [52].

We imbalance potentiation and depression to achieve sparse connectivity. In other memory
tasks, the information loss can be substantial for imbalanced plasticity; for instance, postsynap-
tic-independent (i.e., without a stop-learning mechanism) online learning rules are severely af-
fected when depression does not match potentiation [17–19]. However, here imbalance leads
to a substantial energy reduction in storage as long as the task is below maximal capacity. Fur-
thermore, it is robust against noise and correlated patterns. Imbalanced plasticity is not only a
local and biophysically plausible mechanism, but it is also theoretically well-grounded, as it im-
plements L1-norm regularisation, which is well-known to induce sparseness [27, 33, 34, 53].
Due to the biased drift towards zero in the learning rule, the probability of finding silent synap-
ses is increased. Our learning rule reaches high information using a novel, biologically-plausi-
ble adaptive threshold without the need for an inhibitory partner neuron. The learning rule is
unlike a previous approach to achieve sparse connectivity in which a pruning procedure re-
moves the weakest synapses after learning [14, 15]. Such strategy can lead to as much weight
sparseness as desired, but a significant drop in information and efficiency occurs.

Despite the large efficiency gain found, it should be noted that imbalanced plasticity proba-
bly does not maximise the efficiency fully. In the limit of many synapses the replica technique
from statistical mechanics can provide an estimate on the minimal number of synapses re-
quired for a given performance. Extrapolation of such an analysis of the traditional perceptron
without sign constraints [10], suggests that even more efficient solutions exist, although it is
unclear how to obtain them via online learning. Unfortunately, the weight configuration that
truly maximises memory efficiency requires resorting to an impractical and unbiological ex-
haustive search method, with a search time exponential in the number of synapses. A feasible
alternative is to use greedy L0-norm minimisation methods [54], that are in general not guaran-
teed to achieve the theoretical limiting weight sparseness. Preliminary simulations suggest that
the efficiency in this case is not substantially higher than when minimising the linear norm, as
the increased number of zero-weight synapses is offset by a steep loss in information.

We note that sparse network connectivity can arise even when energy efficiency is not ex-
plicitly optimised for. Weight sparseness also emerges when maximising the information out-
put of a sign-constrained classifier that is required to operate in the presence of postsynaptic
noise [28, 30]. The reported weight distribution displays a large fraction of silent synapses [28].
In that learning setup, depression occurs for negative examples to drive the postsynaptic poten-
tial well below threshold and thus ensures that the activity of the neuron is suppressed even if
noise is present.

In order to implement imbalanced learning various ingredients are needed. 1) As in the clas-
sical perceptron a stop-learning condition needs to be implemented. While in the cerebellum
the complex spike might fulfil this role, neuromodulatory systems have also been suggested
[31]. 2) The balance parameter needs to be precisely set to obtain the most efficient solution
and its value depends on the task to be learned. A conservative imbalance setting will increase
efficiency, but not as much. We note that the need for precisely tuned parameters is common
in this type of studies, just like the standard perceptron requires a precise balance between po-
tentiation and depression, which is also not trivially achieved biologically. 3) For one-class
learning, plasticity only occurs when the neural output should be high but it is not (which
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contrasts the model in [28], where plasticity only occurs when the input is high). A separate su-
pervisory input to the neuron could achieve this. Nevertheless, despite the details of this partic-
ular study the general imbalancing principle could well carry over to other systems. In
particular including precise spike-timing perceptron learning [55, 56], or temporal STDP [57].
In the latter case, interestingly, energy constraints have also been used to define unsupervised
learning rules.

Our study is agnostic about the precise mechanism of pruning. There is a number of bio-
physical ways a synapse can be inactivated [58, 59]: 1) The presynaptic neuron releases neuro-
transmitter, but no receptors are present (postsynaptically silent synapse). 2) Alternatively,
presynaptic release is turned off (mute synapses). Finally, 3) the synapse is anatomically pruned
and thus absent altogether (although it could be recruited again [60]). The first and second
would presumably allow the system to rapidly re-recruit the synapse, while the third option
not only saves energy, but also reduces anatomical wiring length and volume.

It is worthwhile to ask if our model is consistent with neuroscience data. Naively, one might
think that imbalance would predict that LTD would be stronger than LTP, which would con-
tradict typical experimental findings. However, for sparse patterns LTD has to be weakened to
prevent saturation, so that the imbalance condition becomes f � LTP< (1−f) � LTD. It is unclear
whether this condition is fulfilled in biology. Next, one could expect that the theory would pre-
dict a net decrease of synaptic strength during learning. However, this is not the case: after all,
in the simulations all weights are zero initially, so that synaptic weights can only grow during
learning. The reason for this apparent paradox is that learning is gated, unlike unsupervised
learning, so the number of LTP and LTD events on a synapse does not necessarily match.
While our findings also hold when we start from random weights, there is no obvious initial
value for biological synaptic weights.

Finally, one can compare the resulting weight distributions and the number of silent synap-
ses to the data. An advantage of the cerebellum is that also the fraction of zero-weight synapses
is known, which is not the case for other brain regions. The weight distribution in the cerebel-
lum matches theory very well when the capacity of a two-class perceptron is maximised in the
presence of noise. The fraction of silent synapses exhibits a strong dependence on the required
noise tolerance; it is significantly decreased in the low noise limit [28]. Our current model finds
a similar distribution from a very different objective function, namely minimising the energy of
a one-class perceptron. Which of these two is the appropriate objective for the cerebellum or
other brain regions remains a question for future research.

Methods

Criteria for optimising information
Provided that the memory problem is realisable, perceptron learning ensures that each of the K
patterns leads to postsynaptic firing activity (h� 0), i.e., the FN error probability is zero, p10 =
0. In this case the information increases as the FP error probability p01 decreases (see main text,
Eq 7). With the additional assumption that the lures are uncorrelated to the learned patterns, it
can be shown that our perceptron learning rule leads to a decrease of the FP error.

To see why, we write p01 as a function of the learned synaptic weights. As the lure patterns
are uncorrelated to the learned ones, each input xi will be uncorrelated to its corresponding
weight wi. The total synaptic current is given by a sum of many terms. Assuming that there are
sufficient non-zero weights, the probability distribution p(hl) of the net input hl in response to
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a lure is Gaussian, hl 	 N ðhhli; hdh2
l iÞ. Under this approximation,

p01 

Z 1

0

dhl pðhlÞ ¼
1

2
erfc � hhliffiffiffiffiffiffiffiffiffiffiffiffiffi

2hdh2
l i

p
 !

; ð12Þ

where erfcðxÞ ¼ 2ffiffi
p

p
R1
x e�t2dt is the complementary error function. The approximation im-

proves as N!1, as the fraction of non-zero synapses F remains finite irrespective of the im-
balance λ (for λ� λmax) and as long as the memory load α does not vanish [10].

As the inputs are in zero-mean bipolar form, hxi = 0, hx2i = 1. The mean current elicited by

lures is just hhli ¼ Nhxihwi � y
ffiffiffiffi
N

p ¼ �y
ffiffiffiffi
N

p
, independent of the weights. The variance in

the current

hdh2
l i ¼ hðdðhl þ y

ffiffiffiffi
N

p ÞÞ2i ¼ Nðhx2ihw2i � ðhxihwiÞ2Þ ¼ Nhw2i ð13Þ

is proportional to the second raw moment hw2i ¼ R1
0
dwpðwÞw2 of the weight distribution.

For a particular realisation of the system one has Nhw2i ¼ kwk22, the squared Euclidean norm
of the synaptic weight vector. This is illustrated in Fig 8. The information of the system is thus
given by the Euclidean norm of the weight vector alone. This is true for the learned-vs-lure dis-
crimination task as long as the Gaussianity of the lure current hl holds, irrespective of the par-
ticular learning rule that is employed. For instance, p01 takes the same form for postsynaptic-
independent learning [19] or for rate-coded inputs that are learned via the offline pseudo-in-
verse rule [22].

Fig 8. Schematic illustration of the postsynaptic current distributions. In the largeN limit, the
postsynaptic current elicited by lures (dashed line) is well described by a zero-mean Gaussian, whose
variance hdh2

l i is determined by the squared Euclidean norm kwjj22 of the weight vector. Assuming that the
learning dynamics converged, the postsynaptic current distribution provided that the input pattern is a learned
one (solid line) is characteristic of perceptron learning: a significant number of patterns lie on the decision
boundary and thus provoke a current that is exactly at the firing threshold, while the remaining ones generate
super-threshold Gaussian tail currents [28]. The integral of the shaded area gives the FP probability p01,
which depends on the variance of the lure current distribution.

doi:10.1371/journal.pcbi.1004265.g008

Energy Efficient Sparse Connectivity from Imbalanced Plasticity

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004265 June 5, 2015 16 / 24



Thus, the perceptron with the most information satisfies the firing condition h� 0 for every
learned pattern, but has a minimal Euclidean length weight vector. This coincides exactly with
the traditional perceptron that is optimal with respect to the maximal-stability criterion [39],

that prescribes the weight configuration with largest stability D � y
ffiffiffiffi
N

p
=kwk2. This is a widely

used principle that enlarges the basins of attraction in recurrent networks and improves the
ability to generalise in classifiers [39, 61]. Notice that for a fixed threshold, increasing Δ can
only increase information, as it is inversely proportional to the Euclidean weight vector length.
Information maximisation thus reveals an interesting close link between recognition memory
and the more usual two-class learning problems.

Furthermore, at least for random patterns, we can expect the perceptron learning rule to
perform well. Below the critical load αmax the algorithm is known to converge to solutions with
large Δ [62]. In other words, although the learning dynamics is not guaranteed to maximise in-
formation, it should achieve high C in the recognition task. As shown in the main text, Fig 2,
the improvement indeed is minimal when the full quadratic program is actually solved.

The crucial condition that must be observed to achieve good performance is that the firing
threshold θ should be large. Here θ plays the role of an indirect (unnormalised) stability param-
eter. It can be shown [39] that raising θ will indirectly lead to solutions with larger Δ. Lower
bounds on how close the learning rule gets to maximal stability with a certain setting of θ and
a, b can be extracted from the perceptron convergence proof [39].

Note that the above reasoning requires zero-mean inputs and balanced plasticity. For 0 or 1
inputs, the distribution of the unthresholded output hl that is obtained in response to lures is
still well characterised by a Gaussian, as an uncorrelated input pattern gives a sum over on av-
erage fN randomly selected weights. The expressions for the mean hhli and the variance hdh2

l i
now include terms that depend on first- and second-order moments of the synaptic weight dis-
tribution. For a particular realisation of the random system the mean is

hhli ¼ fNhwi � y
ffiffiffiffi
N

p ¼ f jwj � y
ffiffiffiffi
N

p
, and the variance

hdh2
l i ¼ Nðf hwi2 � f 2hwi2Þ ¼ f kwk22 � f 2N�1jwj2. Thus, when the inputs are in 0 or 1 form,

the information per synapse C is no longer a simple function of the squared Euclidean norm as
before. The output error probability p01, and therefore the information, is affected by the cod-
ing level f and the linear norm jwj as well.

Imbalanced plasticity affects convergence of the learning dynamics
To gain further insight on the effects of allowing a depression-potentiation imbalance, we
prove the convergence of perceptron learning rule Eq 3 for non-zero λ, a variation of the de-
tailed proof given by [29]. Besides the inclusion of the parameter λ, differences arise because
our inputs are in bipolar form and because all patterns should elicit a high output.

We study a problem that can provably be solved in a finite number of learning steps by bal-
anced postsynaptic-dependent learning (λ = 0). Therefore we can assume the existence of a
weight configuration w� that solves the recognition task

XN
i¼1

w�
i x

k
i � ðyþ kÞ

ffiffiffiffi
N

p
� 0; k ¼ 1; . . . ;K; ð14Þ

while simultaneously satisfying the N non-negativity constraints w�
i � 0, i = 1, . . ., N. The vari-

able κ� 0 relates the threshold ðyþ kÞ ffiffiffiffi
N

p
of the solution to the threshold y

ffiffiffiffi
N

p
that is used

in the learning algorithm.
We assume that initially all synapses are silent, i.e., we start from the tabula rasa condition

wi = 0, i = 1, . . ., N. Learning proceeds by presenting patterns in random order. Since plasticity
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only occurs when the postsynaptic current h ¼PN
i¼1 wixi � y

ffiffiffiffi
N

p
is not large enough to acti-

vate the perceptron, we index time withm = 1, . . .,M,m being incremented only when h< 0.
Whenever each synapse wi changes, it does so according to the update, Eq 3

DwiðmÞ ¼max f�wiðmÞ; �ZiðmÞg; ð15Þ

where ηi(m) = xi(m)−λ is the weight update before rectification and x(m) 2 {x1, . . ., xK} is the
pattern that led to the update at timem.

The analysis is carried out by tracking the quantity

aðmÞ ¼ w� �wðmÞ
jjw�jj2jjwðmÞjj2

ð16Þ

over time. If we find that after a finite number of updates a(m) would become larger than
one, then the learning process is convergent, as the Cauchy-Schwarz inequality implies that
a(m)� 1. To monitor the time evolution of a(m) we bound the scalar product w� � w(m) from
below and the norm jjw(m)jj2 from above.

After one update, the change Δ(w� � w(m))� w� � w(m+1)−w� � w(m) in the scalar product
is

Dðw� �wðmÞÞ ¼ w� � DwðmÞ
¼ �w� � ZðmÞ þ

X
i2BðmÞ

w�
i ð�þ �l� wiðmÞÞ

¼ �w� � xðmÞ � �ljw�j þ
X
i2BðmÞ

w�
i ð�þ �l� wiðmÞÞ

> �y
ffiffiffiffi
N

p þ �k
ffiffiffiffi
N

p � �ljw�j þ
X
i2BðmÞ

w�
i ð�þ �l� wiðmÞÞ;

ð17Þ

where B(m) = {i : wi(m)< ε + ελ ^ xi(m) = −1, i = 1, . . . , N} is the set of all synapses that are
set to zero due to the lower bound. Note that the lower bound can only be triggered by depres-
sion, which in turn can only occur for low inputs. The inequality is obtained by plugging in the
definition Eq (14) of w�.

A bound on the scalar product w� � w(m) itself afterm such updates can then be obtained
by iteratively applying Eq (17):

w� �wðmÞ > �m
ffiffiffiffi
N

p
yþ k� lffiffiffiffi

N
p jw�j

� �
þ
Xm
l¼1

X
i2BðlÞ

w�
i ð�þ �l� wiðlÞÞ: ð18Þ

Meanwhile, the change DkwðmÞk22 � kwðmþ 1Þk2

2 � kwðmÞk22 in the squared norm of w
(m) after one step can be obtained by expanding the square

kwðmþ 1Þk22 ¼ kwðmÞ þ DwðmÞk2

2, so that

DjjwðmÞjj22 ¼ 2wðmÞ � DwðmÞ þ jjDwðmÞjj22: ð19Þ

We have Δwi(m) 2 {εηi(m), −wi(m)}, with wi(m)< ε+ελ, as Δwi(m) = −wi(m) only for i 2
B(m). Thus, the squared norm of the update is dominated by the terms that come from low in-
puts at synapses that do not cross the lower bound. This gives the inequality

jjDwðmÞjj22 < �2Nð1þ 2lqþ l2qÞ; ð20Þ

where q � maxk1=N
PN

i¼1 dxki ;�1 denotes the maximum fraction of low inputs observed across

the K patterns.
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The scalar product is expanded as before:

wðmÞ � DwðmÞ ¼ �wðmÞ � Zm þ
X
i2BðmÞ

wiðmÞð�þ �l� wiðmÞÞ

¼ �wðmÞ � xðmÞ � �ljwðmÞj þ
X
i2BðmÞ

wiðmÞð�þ �l� wiðmÞÞ

< �wðmÞ � xðmÞ þ
X
i2BðmÞ

wiðmÞð�þ �l� wiðmÞÞ:

ð21Þ

Note that the update condition h< 0 is always satisfied at timem, so that

εwðmÞ � xðmÞ < εy
ffiffiffiffi
N

p
. Together with the bound Eq (20), iterating over Eq (19) gives

jjwðmÞjj22 < �mN
2yffiffiffiffi
N

p þ �ð1þ 2lqþ l2qÞ
� �

þ 2
Xm
l¼1

X
i2BðlÞ

wiðlÞð�þ �l� wiðlÞÞ ð22Þ

< �mN
2yffiffiffiffi
N

p þ �ð1þ 2lqþ l2qÞ þ 2q�ð1þ lÞ2
� �

: ð23Þ

The last inequality is obtained by noticing that wi(l)< ε+ελ inside the sum over l; the factor
q arises from the iteration over the N synapses, conditioning on the low inputs. The bound
Eq (23) implies that as learning proceeds jjw(m)jj2 cannot grow faster than

ffiffiffiffi
m

p
.

From Eq (22) we collect

�my
ffiffiffiffi
N

p
> � 1

2
�2mNð1þ 2lqþ l2qÞ �

Xm
l¼1

X
i2BðlÞ

wiðlÞð�þ �l� wiðlÞÞ: ð24Þ

Turning back to Eq (18) and using the previous result Eq (24) yields

w� �w > �mN
kffiffiffiffi
N

p � 1

2
�ð1þ 2lqþ l2qÞ � l

N
jw�j

� �

þ
Xm
l¼1

X
i2BðlÞ

ðw�
i � wiðlÞÞð�þ �l� wiðlÞÞ

> �mN
kffiffiffiffi
N

p � 1

2
�ð1þ 2lqþ l2qÞ � l

N
jw�j � q�ð1þ lÞ2

� �
:

ð25Þ

The last inequality stems from wi(l)< ε+ελ. The first bracketed factor is always larger than
−(ε+ελ), while the second one is bounded from above by ε+ελ. Iterating over the constrained
sum introduces the factor Nq as before.

We now have a bound for the cosine a(m). Substituting in Eqs (23) and (25) gives

aðmÞ >
ffiffiffiffiffiffiffiffiffiffi
�mN

p �
kN�1=2 � lN�1jw�j � 1

2
�ð1þ 2lqþ l2qÞ � q�ð1þ lÞ2�

jjw�jj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2yN�1=2 þ �ð1þ 2lqþ l2qÞ þ 2q�ð1þ lÞ2

q : ð26Þ

Note that while the neural parameters {ε, θ, λ} can be set at will, for a certain task the solution
margin κ and the norms are constrained by the existence of a vector w� that can satisfy the
learning conditions. Thus, they cannot be varied arbitrarily. In fact, if one keeps jjw�jj2 fixed, it
will only be possible to increase κ up to a certain point, where we will have found the maximal-

ly-stable configuration. Similarly, the linear norm jw�j will have a minimum value.
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Furthermore, in general it is not possible to achieve simultaneously minimal jw�j and maximal
κ with a single configuration.

From Eq (26) a number of conclusions can be drawn. The straightforward condition for
convergence is to check whether that bound becomes larger than one. Another way to show
that the learning algorithm stops is to check if a(m) is a monotonically increasing function of

m. When λ = 0, the process is convergent, as long as ε � 2k=½ ffiffiffiffiNp ð1þ 2qÞ�. For λ> 0, the cru-
cial observation is that we can only show that learning converges if κ can be raised so as to
compensate for the negative terms in the numerator.

Thus, as expected, we find that the imbalance λ is related to the linear norm of the solution
vector (one can increase λ as jw�j can be made smaller), and to the occurrence of depression
events (through q). But more importantly, λmax writes directly as a function of κ as well, which
here sets the task difficulty, since the maximal value for κ shrinks as the memory load α in-
creases. What is more, the minimum of jw�j depends itself on α. This theoretical prediction is
confirmed by our numerical work. As α increases, the achievable imbalance λmax becomes clos-
er to zero, and the fraction of silent synapses approaches that which is obtained with balanced
(λ = 0) learning, cf. Fig 2C.

Generating correlated patterns
We generate correlated patterns following previous work in recognition memory [21]. In the
first model we generate a template pattern x̂ with each input x̂ i being set high (+1) or low (-1)
independently and with equal probability 1/2. To maintain balance we also use its negative,
�x̂, as a template.

The K patterns the neuron should learn are generated conditioned on either template, such

that Pðxki ¼ x̂ iÞ ¼ 1þg
2
. Lure patterns follow the statistics of the learned patterns and are pro-

duced from the same templates. The parameter g controls the level of input correlations; with
the choice g = 0 the original statistics are recovered, while at g = 1 the recognition task is impos-
sible, as all patterns are perfect copies or reversals of one another.

In the second model patterns generated according to the process described above, but only
using a single template. This procedure introduces inter-pattern correlations at the same pre-
synaptic site xi, as the arriving patterns become more similar to one another. It also leads to
heterogeneous mean activity levels across neurons; although the mean number of active pre-
synaptic neurons per pattern remains 1/2, increasing g leads to a bimodal presynaptic firing
distribution. For g> 0, neurons that are active in the template fire more often and, conversely,
the remaining neurons fire less frequently.

Computer simulations
All our computer simulations were implemented on Matlab R2013a (MathWorks) and were
performed on a standard desktop computer. We simulated a single postsynaptic neuron that
was driven by N = 1000 presynaptic random inputs. We varied the memory load parameter
within the range α 2 [0.1,0.8] to avoid both the appearance of unsolvable problem instances
and excessive simulation time. We chose a small learning rate ε = 1/N and a sufficiently large

firing threshold at
ffiffiffiffi
N

p
(i.e., θ = 1) except when otherwise noted. The threshold was set so that

typically no increase in information could be obtained by raising it further. In the figures we in-
cluded second-degree polynomial fits to average values.

The online perceptron learning rule was iterated until all patterns were learned. To obtain
the maximally-imbalanced solution (λ = λmax) we minimised the linear norm jwj using a linear
programming algorithm [38], subject to the set of inequality constraints that ensured that
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every pattern would lead the neuron to fire. Specifically, using Matlab’s interior-point solver,
available via the linprog command (Optimization Toolbox), we minimised jwj subject to N
non-negativity constraints wi � 0 and K linear pattern imprinting constraints specified in ma-

trix form asX>w � y
ffiffiffiffi
N

p
1, where X> is the K × N design matrix whose rows are the

positive examples.
For the balanced case, the maximum-information weight configurations were obtained

using the Krauth-Mézard min-over algorithm [39], followed by rectification after each learning
step in order to enforce the non-negativity synaptic constraints. This is a batch learning algo-
rithm that employs the balanced rule (Eq 3, λ = 0). At each step the pattern xkmin with lowest

stability, kmin ¼ argminK
k¼1

PN
i¼1 wix

k
i , is determined on the forehand. Then, only xkmin is

learned; plasticity is silenced for all other patterns. To confirm optimality and validate our
mathematical results we also resorted to an interior-point convex optimiser [38] and solved the
quadratic programming problem of finding the weight vector with minimal Euclidean norm
jjw||2. We resorted to Matlab’s quadprog command (Optimization Toolbox) to minimise

kwjj22 subject to the same N non-negativity and the K pattern imprinting constraints imposed
on the linear program. Up to numerical precision the obtained pattern stabilities Δmatched
those given by the min-over algorithm.

To calculate the information Eq (7) we tested the neuron with a set of K lures generated
with the same statistics as the K learned patterns and recorded the number of FP errors. To de-
termine the fraction of silent synapses, one has to take care of numerical rounding errors as it
might be unclear when a synapse can truly be considered zero. We removed the weakest synap-
ses one by one while probing the neuron with a large number of lures, until a drop in informa-
tion occurred. With this procedure we could distinguish the true zero-weight synapses from
small ones while avoiding numerical precision issues and arbitrary threshold setting. The re-
sults did not qualitatively change if we simply counted the number of synapses below some
small weight wzero � maxN

i¼1wi, held constant across trials.
Since we expected self-averaging of the synaptic weights distribution from the validity of the

replica trick [7], the averaged synaptic weight histograms were collected from 1000 trials. To
set a common weight scale across different learning rules and input statistics, we normalised
the synaptic weights so that the threshold became unity, i.e., we re-scaled the weights by a fac-

tor wi=minK
k¼1

PN
i¼1 x

k
i wi.
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