1,355 research outputs found

    Silver(I) and mercury(II) complexes of meta- and para-xylyl linked bis(imidazol-2-ylidenes)

    Get PDF
    Mononuclear silver and mercury complexes bearing bis-N-heterocyclic carbene (NHC) ligands withlinear coordination modes have been prepared and structurally characterised. The complexes form metallocyclic structures that display rigid solution behaviour. A larger metallocycle of the form [L2Ag2]2+ [where L = parabis(N-methylimidazolylidene)xylylene] has been isolated from the reaction of para-xylylene-bis(N-methylimidazolium) chloride and Ag2O. Reaction of silver- and mercury-NHC complexes with Pd(NCCH3)2Cl2 affords palladium-NHC complexes via NHC-transfer reactions, the mercury case being only the second example of a NHC-transfer reaction using a mercury-NHC complex

    Feynman Rules for the Rational Part of the Standard Model One-loop Amplitudes in the 't Hooft-Veltman γ5\gamma_5 Scheme

    Full text link
    We study Feynman rules for the rational part RR of the Standard Model amplitudes at one-loop level in the 't Hooft-Veltman γ5\gamma_5 scheme. Comparing our results for quantum chromodynamics and electroweak 1-loop amplitudes with that obtained based on the Kreimer-Korner-Schilcher (KKS) γ5\gamma_5 scheme, we find the latter result can be recovered when our γ5\gamma_5 scheme becomes identical (by setting g5s=1g5s=1 in our expressions) with the KKS scheme. As an independent check, we also calculate Feynman rules obtained in the KKS scheme, finding our results in complete agreement with formulae presented in the literature. Our results, which are studied in two different γ5\gamma_5 schemes, may be useful for clarifying the γ5\gamma_5 problem in dimensional regularization. They are helpful to eliminate or find ambiguities arising from different dimensional regularization schemes.Comment: Version published in JHEP, presentation improved, 41 pages, 10 figure

    Observation of anomalous decoherence effect in a quantum bath at room temperature

    Get PDF
    Decoherence of quantum objects is critical to modern quantum sciences and technologies. It is generally believed that stronger noises cause faster decoherence. Strikingly, recent theoretical research discovers the opposite case for spins in quantum baths. Here we report experimental observation of the anomalous decoherence effect for the electron spin-1 of a nitrogen-vacancy centre in high-purity diamond at room temperature. We demonstrate that under dynamical decoupling, the double-transition can have longer coherence time than the single-transition, even though the former couples to the nuclear spin bath as twice strongly as the latter does. The excellent agreement between the experimental and the theoretical results confirms the controllability of the weakly coupled nuclear spins in the bath, which is useful in quantum information processing and quantum metrology.Comment: 22 pages, related paper at http://arxiv.org/abs/1102.557

    Quantized reduction as a tensor product

    Full text link
    Symplectic reduction is reinterpreted as the composition of arrows in the category of integrable Poisson manifolds, whose arrows are isomorphism classes of dual pairs, with symplectic groupoids as units. Morita equivalence of Poisson manifolds amounts to isomorphism of objects in this category. This description paves the way for the quantization of the classical reduction procedure, which is based on the formal analogy between dual pairs of Poisson manifolds and Hilbert bimodules over C*-algebras, as well as with correspondences between von Neumann algebras. Further analogies are drawn with categories of groupoids (of algebraic, measured, Lie, and symplectic type). In all cases, the arrows are isomorphism classes of appropriate bimodules, and their composition may be seen as a tensor product. Hence in suitable categories reduction is simply composition of arrows, and Morita equivalence is isomorphism of objects.Comment: 44 pages, categorical interpretation adde

    Automation of one-loop QCD corrections

    Get PDF
    We present the complete automation of the computation of one-loop QCD corrections, including UV renormalization, to an arbitrary scattering process in the Standard Model. This is achieved by embedding the OPP integrand reduction technique, as implemented in CutTools, into the MadGraph framework. By interfacing the tool so constructed, which we dub MadLoop, with MadFKS, the fully automatic computation of any infrared-safe observable at the next-to-leading order in QCD is attained. We demonstrate the flexibility and the reach of our method by calculating the production rates for a variety of processes at the 7 TeV LHC.Comment: 64 pages, 12 figures. Corrected the value of m_Z in table 1. In table 2, corrected the values of cross sections in a.4 and a.5 (previously computed with mu=mtop/2 rather than mu=mtop/4). In table 2, corrected the values of NLO cross sections in b.3, b.6, c.3, and e.7 (the symmetry factor for a few virtual channels was incorrect). In sect. A.4.3, the labeling of the four-momenta was incorrec

    Direct determination of the solar neutrino fluxes from solar neutrino data

    Get PDF
    We determine the solar neutrino fluxes from a global analysis of the solar and terrestrial neutrino data in the framework of three-neutrino mixing. Using a Bayesian approach we reconstruct the posterior probability distribution function for the eight normalization parameters of the solar neutrino fluxes plus the relevant masses and mixing, with and without imposing the luminosity constraint. This is done by means of a Markov Chain Monte Carlo employing the Metropolis-Hastings algorithm. We also describe how these results can be applied to test the predictions of the Standard Solar Models. Our results show that, at present, both models with low and high metallicity can describe the data with good statistical agreement.Comment: 24 pages, 1 table, 7 figures. Acknowledgments correcte

    A Comprehensive Analysis of Electric Dipole Moment Constraints on CP-violating Phases in the MSSM

    Get PDF
    We analyze the constraints placed on individual, flavor diagonal CP-violating phases in the minimal supersymmetric extension of the Standard Model (MSSM) by current experimental bounds on the electric dipole moments (EDMs) of the neutron, Thallium, and Mercury atoms. We identify the four CP-violating phases that are individually highly constrained by current EDM bounds, and we explore how these phases and correlations among them are constrained by current EDM limits. We also analyze the prospective implications of the next generation of EDM experiments. We point out that all other CP-violating phases in the MSSM are not nearly as tightly constrained by limits on the size of EDMs. We emphasize that a rich set of phenomenological consequences is potentially associated with these generically large EDM-allowed phases, ranging from B physics, electroweak baryogenesis, and signals of CP-violation at the CERN Large Hadron Collider and at future linear colliders. Our numerical study takes into account the complete set of contributions from one- and two-loop EDMs of the electron and quarks, one- and two-loop Chromo-EDMs of quarks, the Weinberg 3-gluon operator, and dominant 4-fermion CP-odd operator contributions, including contributions which are both included and not included yet in the CPsuperH2.0 package. We also introduce an open-source numerical package, 2LEDM, which provides the complete set of two-loop electroweak diagrams contributing to the electric dipole moments of leptons and quarks.Comment: 23 pages, 11 figures; v2: references added, minor change

    Explicit-Duration Hidden Markov Model Inference of UP-DOWN States from Continuous Signals

    Get PDF
    Neocortical neurons show UP-DOWN state (UDS) oscillations under a variety of conditions. These UDS have been extensively studied because of the insight they can yield into the functioning of cortical networks, and their proposed role in putative memory formation. A key element in these studies is determining the precise duration and timing of the UDS. These states are typically determined from the membrane potential of one or a small number of cells, which is often not sufficient to reliably estimate the state of an ensemble of neocortical neurons. The local field potential (LFP) provides an attractive method for determining the state of a patch of cortex with high spatio-temporal resolution; however current methods for inferring UDS from LFP signals lack the robustness and flexibility to be applicable when UDS properties may vary substantially within and across experiments. Here we present an explicit-duration hidden Markov model (EDHMM) framework that is sufficiently general to allow statistically principled inference of UDS from different types of signals (membrane potential, LFP, EEG), combinations of signals (e.g., multichannel LFP recordings) and signal features over long recordings where substantial non-stationarities are present. Using cortical LFPs recorded from urethane-anesthetized mice, we demonstrate that the proposed method allows robust inference of UDS. To illustrate the flexibility of the algorithm we show that it performs well on EEG recordings as well. We then validate these results using simultaneous recordings of the LFP and membrane potential (MP) of nearby cortical neurons, showing that our method offers significant improvements over standard methods. These results could be useful for determining functional connectivity of different brain regions, as well as understanding network dynamics

    The Evolution of Mammalian Gene Families

    Get PDF
    Gene families are groups of homologous genes that are likely to have highly similar functions. Differences in family size due to lineage-specific gene duplication and gene loss may provide clues to the evolutionary forces that have shaped mammalian genomes. Here we analyze the gene families contained within the whole genomes of human, chimpanzee, mouse, rat, and dog. In total we find that more than half of the 9,990 families present in the mammalian common ancestor have either expanded or contracted along at least one lineage. Additionally, we find that a large number of families are completely lost from one or more mammalian genomes, and a similar number of gene families have arisen subsequent to the mammalian common ancestor. Along the lineage leading to modern humans we infer the gain of 689 genes and the loss of 86 genes since the split from chimpanzees, including changes likely driven by adaptive natural selection. Our results imply that humans and chimpanzees differ by at least 6% (1,418 of 22,000 genes) in their complement of genes, which stands in stark contrast to the oft-cited 1.5% difference between orthologous nucleotide sequences. This genomic “revolving door” of gene gain and loss represents a large number of genetic differences separating humans from our closest relatives
    corecore