12 research outputs found
A monotonic relationship between the variability of the infectious period and final size in pairwise epidemic modelling
For a recently derived pairwise model of network epidemics with non-Markovian recovery, we prove that under some mild technical conditions on the distribution of the infectious periods, smaller variance in the recovery time leads to higher reproduction number, and consequently to a larger epidemic outbreak, when the mean infectious period is fixed. We discuss how this result is related to various stochastic orderings of the distributions of infectious periods. The results are illustrated by a number of explicit stochastic simulations, suggesting that their validity goes beyond regular networks
A pre-registered short-term forecasting study of COVID-19 in Germany and Poland during the second wave
Disease modelling has had considerable policy impact during the ongoing COVID-19 pandemic, and it is increasingly acknowledged that combining multiple models can improve the reliability of outputs. Here we report insights from ten weeks of collaborative short-term forecasting of COVID-19 in Germany and Poland (12 October–19 December 2020). The study period covers the onset of the second wave in both countries, with tightening non-pharmaceutical interventions (NPIs) and subsequently a decay (Poland) or plateau and renewed increase (Germany) in reported cases. Thirteen independent teams provided probabilistic real-time forecasts of COVID-19 cases and deaths. These were reported for lead times of one to four weeks, with evaluation focused on one- and two-week horizons, which are less affected by changing NPIs. Heterogeneity between forecasts was considerable both in terms of point predictions and forecast spread. Ensemble forecasts showed good relative performance, in particular in terms of coverage, but did not clearly dominate single-model predictions. The study was preregistered and will be followed up in future phases of the pandemic.Peer Reviewe
Recommended from our members
A mechanistic spatio-temporal framework for modelling individual-to-individual transmission—With an application to the 2014-2015 West Africa Ebola outbreak
In recent years there has been growing availability of individual-level spatio-temporal disease data, particularly due to the use of modern communicating devices with GPS tracking functionality. These detailed data have been proven useful for inferring disease transmission to a more refined level than previously. However, there remains a lack of statistically sound frameworks to model the underlying transmission dynamic in a mechanistic manner. Such a development is particularly crucial for enabling a general epidemic predictive framework at the individual level. In this paper we propose a new statistical framework for mechanistically modelling individual-to-individual disease transmission in a landscape with heterogeneous population density. Our methodology is first tested using simulated datasets, validating our inferential machinery. The methodology is subsequently applied to data that describes a regional Ebola outbreak in Western Africa (2014-2015). Our results show that the methods are able to obtain estimates of key epidemiological parameters that are broadly consistent with the literature, while revealing a significantly shorter distance of transmission. More importantly, in contrast to existing approaches, we are able to perform a more general model prediction that takes into account the susceptible population. Finally, our results show that, given reasonable scenarios, the framework can be an effective surrogate for susceptible-explicit individual models which are often computationally challenging
Interference Excision in Spread Spectrum Communications Using Adaptive Positive Time-Frequency Analysis
This paper introduces a novel algorithm to excise single and multicomponent chirp-like interferences in direct sequence spread spectrum (DSSS) communications. The excision algorithm consists of two stages: adaptive signal decomposition stage and directional element detection stage based on the Hough-Radon transform (HRT). Initially, the received spread spectrum signal is decomposed into its time-frequency (TF) functions using an adaptive signal decomposition algorithm, and the resulting TF functions are mapped onto the TF plane. We then use a line detection algorithm based on the HRT that operates on the image of the TF plane and detects energy varying directional elements that satisfy a parametric constraint. Interference is modeled by reconstructing the corresponding TF functions detected by the HRT, and subtracted from the received signal. The proposed technique has two main advantages: (i) it localizes the interferences on the TF plane with no cross-terms, thus facilitating simple filtering techniques based on thresholding of the TF functions, and is an efficient way to excise the interference; (ii) it can be used for the detection of any directional interferences that can be parameterized. Simulation results with synthetic models have shown successful performance with linear and quadratic chirp interferences for single and multicomponent interference cases. The proposed method excises the interference even under very low SNR conditions of −10 dB, and the technique could be easily extended to any interferences that could be represented by a parametric equation in the TF plane
Combination Therapy Strategy of Quorum Quenching Enzyme and Quorum Sensing Inhibitor in Suppressing Multiple Quorum Sensing Pathways of P. aeruginosa
Abstract The threat of antibiotic resistant bacteria has called for alternative antimicrobial strategies that would mitigate the increase of classical resistance mechanism. Many bacteria employ quorum sensing (QS) to govern the production of virulence factors and formation of drug-resistant biofilms. Targeting the mechanism of QS has proven to be a functional alternative to conventional antibiotic control of infections. However, the presence of multiple QS systems in individual bacterial species poses a challenge to this approach. Quorum sensing inhibitors (QSI) and quorum quenching enzymes (QQE) have been both investigated for their QS interfering capabilities. Here, we first simulated the combination effect of QQE and QSI in blocking bacterial QS. The effect was next validated by experiments using AiiA as QQE and G1 as QSI on Pseudomonas aeruginosa LasR/I and RhlR/I QS circuits. Combination of QQE and QSI almost completely blocked the P. aeruginosa las and rhl QS systems. Our findings provide a potential chemical biology application strategy for bacterial QS disruption