334 research outputs found

    Brain Organoids as Model Systems for Genetic Neurodevelopmental Disorders

    Get PDF
    Neurodevelopmental disorders (NDDs) are a group of disorders in which the development of the central nervous system (CNS) is disturbed, resulting in different neurological and neuropsychiatric features, such as impaired motor function, learning, language or non-verbal communication. Frequent comorbidities include epilepsy and movement disorders. Advances in DNA sequencing technologies revealed identifiable genetic causes in an increasingly large proportion of NDDs, highlighting the need of experimental approaches to investigate the defective genes and the molecular pathways implicated in abnormal brain development. However, targeted approaches to investigate specific molecular defects and their implications in human brain dysfunction are prevented by limited access to patient-derived brain tissues. In this context, advances of both stem cell technologies and genome editing strategies during the last decade led to the generation of three-dimensional (3D) in vitro-models of cerebral organoids, holding the potential to recapitulate precise stages of human brain development with the aim of personalized diagnostic and therapeutic approaches. Recent progresses allowed to generate 3D-structures of both neuronal and non-neuronal cell types and develop either whole-brain or region-specific cerebral organoids in order to investigate in vitro key brain developmental processes, such as neuronal cell morphogenesis, migration and connectivity. In this review, we summarized emerging methodological approaches in the field of brain organoid technologies and their application to dissect disease mechanisms underlying an array of pediatric brain developmental disorders, with a particular focus on autism spectrum disorders (ASDs) and epileptic encephalopathies

    Life events and hemodynamic stress reactivity in the middle-aged and elderly

    Get PDF
    Recent versions of the reactivity hypothesis, which consider it to be the product of stress exposure and exaggerated haemodynamic reactions to stress that confers cardiovascular disease risk, assume that reactivity is independent of the experience of stressful life events. This assumption was tested in two substantial cohorts, one middle-aged and one elderly. Participants had to indicate from a list of major stressful life events up to six they had experienced in the previous two years. They were also asked to rate how disruptive and stressful they were, at the time of occurrence and now. Blood pressure and pulse rate were measured at rest and in response to acute mental stress. Those who rated the events as highly disruptive at the time of exposure and currently exhibited blunted systolic blood pressure reactions to acute stress. The present results suggest that acute stress reactivity may not be independent of stressful life events experience

    Vesicular glutamate release from feeder-free hiPSC-derived neurons

    Get PDF
    Human-induced pluripotent stem cells (hiPSCs) represent one of the main and powerful tools for the in vitro modeling of neurological diseases. Standard hiPSC-based protocols make use of animal-derived feeder systems to better support the neuronal differentiation process. Despite their efficiency, such protocols may not be appropriate to dissect neuronal specific properties or to avoid interspecies contaminations, hindering their future translation into clinical and drug discovery approaches. In this work, we focused on the optimization of a reproducible protocol in feeder-free conditions able to generate functional glutamatergic neurons. This protocol is based on a generation of neuroprecursor cells differentiated into human neurons with the administration in the culture medium of specific neurotrophins in a Geltrex-coated substrate. We confirmed the efficiency of this protocol through molecular analysis (upregulation of neuronal markers and neurotransmitter receptors assessed by gene expression profiling and expression of the neuronal markers at the protein level), morphological analysis, and immunfluorescence detection of pre-synaptic and post-synaptic markers at synaptic boutons. The hiPSC-derived neurons acquired Ca2+-dependent glutamate release properties as a hallmark of neuronal maturation. In conclusion, our study describes a new methodological approach to achieve feeder-free neuronal differentiation from hiPSC and adds a new tool for functional characterization of hiPSC-derived neurons

    Mutations in PTRH2 cause novel infantile-onset multisystem disease with intellectual disability, microcephaly, progressive ataxia, and muscle weakness

    Get PDF
    OBJECTIVE: To identify the cause of a so-far unreported phenotype of infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD). METHODS: We characterized a consanguineous family of Yazidian-Turkish descent with IMNEPD. The two affected children suffer from intellectual disability, postnatal microcephaly, growth retardation, progressive ataxia, distal muscle weakness, peripheral demyelinating sensorimotor neuropathy, sensorineural deafness, exocrine pancreas insufficiency, hypothyroidism, and show signs of liver fibrosis. We performed whole-exome sequencing followed by bioinformatic analysis and Sanger sequencing on affected and unaffected family members. The effect of mutations in the candidate gene was studied in wild-type and mutant mice and in patient and control fibroblasts. RESULTS: In a consanguineous family with two individuals with IMNEPD, we identified a homozygous frameshift mutation in the previously not disease-associated peptidyl-tRNA hydrolase 2 (PTRH2) gene. PTRH2 encodes a primarily mitochondrial protein involved in integrin-mediated cell survival and apoptosis signaling. We show that PTRH2 is highly expressed in the developing brain and is a key determinant in maintaining cell survival during human tissue development. Moreover, we link PTRH2 to the mTOR pathway and thus the control of cell size. The pathology suggested by the human phenotype and neuroimaging studies is supported by analysis of mutant mice and patient fibroblasts. INTERPRETATION: We report a novel disease phenotype, show that the genetic cause is a homozygous mutation in the PTRH2 gene, and demonstrate functional effects in mouse and human tissues. Mutations in PTRH2 should be considered in patients with undiagnosed multisystem neurologic, endocrine, and pancreatic disease

    The altered expression of α1 and β3 subunits of the gamma-aminobutyric acid A receptor is related to the hepatitis C virus infection

    Get PDF
    The modulation of the gamma-aminobutyric acid type A (GABA A) receptors activity was observed in several chronic hepatitis failures, including hepatitis C. The expression of GABA A receptor subunits α1 and β3 was detected in peripheral blood mononuclear cells (PBMCs) originated from healthy donors. The aim of the study was to evaluate if GABA A α1 and β3 expression can also be observed in PBMCs from chronic hepatitis C (CHC) patients and to evaluate a possible association between their expression and the course of hepatitis C virus (HCV) infection. GABA A α1- and β3-specific mRNAs presence and a protein expression in PBMCs from healthy donors and CHC patients were screened by reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. In patients, HCV RNA was determined in sera and PBMCs. It was shown that GABA A α1 and β3 expression was significantly different in PBMCs from CHC patients and healthy donors. In comparison to healthy donors, CHC patients were found to present an increase in the expression of GABA A α1 subunit and a decrease in the expression of β3 subunit in their PBMCs. The modulation of α1 and β3 GABA A receptors subunits expression in PBMCs may be associated with ongoing or past HCV infection

    Expanding Phenotype of Poirier\u2013Bienvenu Syndrome: New Evidence from an Italian Multicentrical Cohort of Patients

    Get PDF
    Background: Poirier\u2013Bienvenu Neurodevelopmental Syndrome (POBINDS) is a rare disease linked to mutations of the CSNK2B gene, which encodes for a subunit of caseinkinase CK2 involved in neuronal growth and synaptic transmission. Its main features include early-onset epilepsy and intellectual disability. Despite the lack of cases described, it appears that POBINDS could manifest with a wide range of phenotypes, possibly related to the different mutations of CSNK2B. Methods: Our multicentric, retrospective study recruited nine patients with POBINDS, detected using next-generation sequencing panels and whole-exome sequencing. Clinical, laboratory, and neuroimaging data were reported for each patient in order to assess the severity of phenotype, and eventually, a correlation with the type of CSNK2B mutation. Results: We reported nine unrelated patients with heterozygous de novo mutations of the CSNK2B gene. All cases presented epilepsy, and eight patients were associated with a different degree of intellectual disability. Other features detected included endocrinological and vascular abnormalities and dysmorphisms. Genetic analysis revealed six new variants of CSNK2B that have not been reported previously. Conclusion: Although it was not possible to assess a genotype\u2013phenotype correlation in our patients, our research further expands the phenotype spectrum of POBINDS patients, identifying new mutations occurring in the CSNK2B gene

    Genetics of intellectual disability in consanguineous families

    No full text
    Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence

    Cys34-cysteinylated human serum albumin is a sensitive plasma marker in oxidative stress-related chronic diseases

    Get PDF
    The degree of oxidized cysteine (Cys) 34 in human serum albumin (HSA), as determined by high performance liquid chromatography (HPLC), is correlated with oxidative stress related pathological conditions. In order to further characterize the oxidation of Cys34-HSA at the molecular level and to develop a suitable analytical method for a rapid and sensitive clinical laboratory analysis, the use of electrospray ionization time-of-flight mass spectrometer (ESI-TOFMS) was evaluated. A marked increase in the cysteinylation of Cys34 occurs in chronic liver and kidney diseases and diabetes mellitus. A significant positive correlation was observed between the Cys-Cys34-HSA fraction of plasma samples obtained from 229 patients, as determined by ESI-TOFMS, and the degree of oxidized Cys34-HSA determined by HPLC. The Cys-Cys34-HSA fraction was significantly increased with the progression of liver cirrhosis, and was reduced by branched chain amino acids (BCAA) treatment. The changes in the Cys-Cys34-HSA fraction were significantly correlated with the alternations of the plasma levels of advanced oxidized protein products, an oxidative stress marker for proteins. The binding ability of endogenous substances (bilirubin and tryptophan) and drugs (warfarin and diazepam) to HSA purified from chronic liver disease patients were significantly suppressed but significantly improved by BCAA supplementation. Interestingly, the changes in this physiological function of HSA in chronic liver disease were correlated with the Cys-Cys34-HSA fraction. In conclusion, ESI-TOFMS is a suitable high throughput method for the rapid and sensitive quantification of Cys-Cys34-HSA in a large number of samples for evaluating oxidative stress related chronic disease progression or in response to a treatment

    Summary of the ISEV workshop on extracellular vesicles as disease biomarkers, held in Birmingham, UK, during December 2017

    Get PDF
    This report summarises the presentations and activities of the ISEV Workshop on extracellular vesicle biomarkers held in Birmingham, UK during December 2017. Among the key messages was broad agreement about the importance of biospecimen science. Much greater attention needs to be paid towards the provenance of collected samples. The workshop also highlighted clear gaps in our knowledge about pre-analytical factors that alter extracellular vesicles (EVs). The future utility of certified standards for credentialing of instruments and software, to analyse EV and for tracking the influence of isolation steps on the structure and content of EVs were also discussed. Several example studies were presented, demonstrating the potential utility for EVs in disease diagnosis, prognosis, longitudinal serial testing and stratification of patients. The conclusion of the workshop was that more effort focused on pre-analytical issues and benchmarking of isolation methods is needed to strengthen collaborations and advance more effective biomarkers

    Urinary Exosomal microRNA-451-5p Is a Potential Early Biomarker of Diabetic Nephropathy in Rats

    Get PDF
    Non-invasive renal signatures can help in serial monitoring of diabetic patients. We tested whether urinary exosomal (UE) microRNA (miR) analysis could non-invasively predict renal pathology in diabetic rats during the course of diabetes. Diabetes mellitus (DM) was induced in male Wistar rats by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg body weight). Non-diabetic control (CTRL) rats were injected with vehicle. Insulin (INS) treatment (5U/d, s.c.) was provided to 50% of the DM rats. Urine samples were collected at weeks 3, 6, and 9 following injections and UE prepared. An increase in miR-451-5p and miR-16, observed by pilot small RNA sequencing of UE RNA, was confirmed by quantitative real-time polymerase chain reaction (qPCR) and selected for further study. Subsets of rats were euthanized after 3, 6, and 9 weeks of diabetes for renal pathology analysis, including determination of the tubulointerstitial fibrotic index (TFI) and glomerulosclerotic index (GI) scores. qPCR showed a substantial rise in miR-451-5p in UE from DM rats during thecourse of diabetes, with a significant rise (median fold change >1000) between 3 and 6 weeks. Moreover, UE miR-451-5p at 6 weeks predicted urine albumin at 9 weeks (r = 0.76). A delayed but significant rise was also observed for miR-16. In contrast, mean urine albumin only increased 21% between 3 and 6 weeks (non-significant rise), and renal TFI and GI were unchanged till 9 weeks. Renal expression of miR-451-5p and miR-16 (at 10 weeks) did not correlate with urine levels, and moreover, was negatively associated with indices of renal pathology (r�-0.70, p = 0.005 for TFI and r�-0.6, p�0.02 for GI). Overall, a relative elevation in renal miR-451-5p and miR-16 in diabetes appeared protective against diabetes- induced kidney fibrosis; while UE miR-451-5p may hold prognostic value as an earlyand sensitive non-invasive indicator of renal diseas
    • …
    corecore