4,108 research outputs found

    Nonlinear magnetization dynamics of antiferromagnetic spin resonance induced by intense terahertz magnetic field

    Get PDF
    We report on the nonlinear magnetization dynamics of a HoFeO3 crystal induced by a strong terahertz magnetic field resonantly enhanced with a split ring resonator and measured with magneto-optical Kerr effect microscopy. The terahertz magnetic field induces a large change (~40%) in the spontaneous magnetization. The frequency of the antiferromagnetic resonance decreases in proportion to the square of the magnetization change. A modified Landau-Lifshitz-Gilbert equation with a phenomenological nonlinear damping term quantitatively reproduced the nonlinear dynamics

    Mutual phase locking of a coupled laser diode-Gunn diode pair

    Get PDF
    Mutual phase locking has been achieved through series connection of a semiconductor laser and a Gunn diode oscillator. Experimental results obtained demonstrate a mutual interaction between the two oscillators which results in a short term Gunn diode oscillator stability and improved spectral purity of its output. We also observe a narrowing of laser pulses and an improvement in regularity

    The X-ray Properties of M101 ULX-1 = CXOKM101 J140332.74+542102

    Full text link
    We report our analysis of X-ray data on M101 ULX-1, concentrating on high state Chandra and XMM-Newton observations. We find that the high state of M101 ULX-1 may have a preferred recurrence timescale. If so, the underlying clock may have periods around 160 or 190 days, or possibly around 45 days. Its short-term variations resemble those of X-ray binaries at high accretion rate. If this analogy is correct, we infer that the accretor is a 20-40 Msun object. This is consistent with our spectral analysis of the high state spectra of M101 ULX-1, from which we find no evidence for an extreme (> 10^40 ergs/s) luminosity. We present our interpretation in the framework of a high mass X-ray binary system consisting of a B supergiant mass donor and a large stellar-mass black hole.Comment: 23 pages, 7 figures, accepted for publication in the Astrophysical Journa

    Initial POLAR MFE observation of substorm signatures in the polar magnetosphere

    Get PDF
    This paper studies substorm influences in the polar magnetosphere using data from the POLAR magnetic field experiment (MFE). The POLAR spacecraft remains in the high altitude polar magnetosphere for extended periods around apogee. There it can stay at nearly constant altitude through all phases of a substorm, which was not possible on previous missions. We report such an event on March 28, 1996. Ground magnetometers monitored substorm activity, while the POLAR spacecraft, directly over the pole at (−0.8, −0.6, 8.5) RE in GSM coordinates, observed a corresponding perturbation in the total magnetic field strength. The total magnetic field first increased, then recovered toward quiet levels, consistent with erosion of magnetic flux from the dayside magnetosphere, followed by transport of that flux to the magnetotail, and eventual onset of tail reconnection and the return of that magnetic flux to the dayside magnetosphere

    An XMM-Newton observation of the nova-like variable UX UMa: spatially and spectrally resolved two-component X-ray emission

    Full text link
    In the optical and ultraviolet regions of the electromagnetic spectrum, UX Ursae Majoris is a deeply eclipsing cataclysmic variable. However, no soft X-ray eclipse was detected in ROSAT observations. We have obtained a 38 ksec XMM-Newton observation to further constrain the origin of the X-rays. The combination of spectral and timing information allows us to identify two components in the X-ray emission of the system. The soft component, dominant below photon energies of 2 keV, can be fitted with a multi-temperature plasma model and is uneclipsed. The hard component, dominant above 3 keV, can be fitted with a kT ~ 5 keV plasma model and appears to be deeply eclipsed. We suggest that the most likely source of the hard X-ray emission in UX UMa, and other systems in high mass transfer states, is the boundary layer.Comment: To appear in MNRAS Letter

    Detection of regional scale sea-to-air oxygen emission related to spring bloom near Japan by using in-situ measurements of atmospheric oxygen/nitrogen ratio

    Get PDF
    International audienceWe have been carrying out in-situ monitoring of atmospheric O2/N2 ratio at Cape Ochi-ishi (COI; 43°10´ N, 145°30´ E) in the northern part of Japan since March 2005 by using a modified gas chromatography/thermal conductivity detector (GC/TCD). The standard deviation of the O2/N2 ratio is estimated to be about ±14 per meg (?3 ppm) with intervals of 10 min. Thus, the in-situ measurement system has a 1? precision of ±6 per meg ((?1.2 ppm) for one-hour mean O2/N2 ratio. Atmospheric potential oxygen (APO ?O2+1.1CO2), which is conserved with respect to terrestrial photosynthesis and respiration but reflects changes in air-sea O2 and CO2 fluxes, shows large variabilities from April to early July 2005. Distribution of satellite-derived marine primary production indicates occurrences of strong bloom in the Japan Sea in April and in the Okhotsk Sea and the western North Pacific near Hokkaido Island in June. Back trajectory analysis of air masses indicates that high values of APO, which last for several hours or several days, can be attributed to the oxygen emission associated with the spring bloom of active primary production
    corecore