39 research outputs found
Stable isotope food-web analysis and mercury biomagnification in polar bears ( Ursus maritimus )
Mercury (Hg) biomagnification occurs in many ecosystems, resulting in a greater potential for toxicological effects in higher-level trophic feeders. However, Hg transport pathways through different food-web channels are not well known, particularly in high-latitude systems affected by the atmospheric Hg deposition associated with snow and ice. Here, we report on stable carbon and nitrogen isotope ratios, and Hg concentrations, determined for 26, late 19th and early 20th century, polar bear ( Ursus maritimus ) hair specimens, collected from catalogued museum collections. These data elucidate relationships between the high-latitude marine food-web structure and Hg concentrations in polar bears. The carbon isotope compositions of polar bear hairs suggest that polar bears derive nutrition from coupled food-web channels, based in pelagic and sympagic primary producers, whereas the nitrogen isotope compositions indicate that polar bears occupy > fourth-level trophic positions. Our results show a positive correlation between polar bear hair Hg concentrations and δ 15 N. Interpretation of the stable isotope data in combination with Hg concentrations tentatively suggests that polar bears participating in predominantly pelagic food webs exhibit higher mercury concentrations than polar bears participating in predominantly sympagic food webs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73930/1/j.1751-8369.2009.00114.x.pd
Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk
Background: A recent association study identified a common variant (rs9790517) at 4q24 to be associated with breast cancer risk. Independent association signals and potential functional variants in this locus have not been explored.
Methods: We conducted a fine-mapping analysis in 55,540 breast cancer cases and 51,168 controls from the Breast Cancer Association Consortium.
Results: Conditional analyses identified two independent association signals among women of European ancestry, represented by rs9790517 [conditional P = 2.51 × 10−4; OR, 1.04; 95% confidence interval (CI), 1.02–1.07] and rs77928427 (P = 1.86 × 10−4; OR, 1.04; 95% CI, 1.02–1.07). Functional annotation using data from the Encyclopedia of DNA Elements (ENCODE) project revealed two putative functional variants, rs62331150 and rs73838678 in linkage disequilibrium (LD) with rs9790517 (r2 ≥ 0.90) residing in the active promoter or enhancer, respectively, of the nearest gene, TET2. Both variants are located in DNase I hypersensitivity and transcription factor–binding sites. Using data from both The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), we showed that rs62331150 was associated with level of expression of TET2 in breast normal and tumor tissue.
Conclusion: Our study identified two independent association signals at 4q24 in relation to breast cancer risk and suggested that observed association in this locus may be mediated through the regulation of TET2.
Impact: Fine-mapping study with large sample size warranted for identification of independent loci for breast cancer risk