63 research outputs found

    Candidate Screening of the TRPC3 Gene in Cerebellar Ataxia

    Get PDF
    The hereditary cerebellar ataxias are a diverse group of neurodegenerative disorders primarily characterised by loss of balance and coordination due to dysfunction of the cerebellum and its associated pathways. Although many genetic mutations causing inherited cerebellar ataxia have been identified, a significant percentage of patients remain whose cause is unknown. The transient receptor potential (TRP) family member TRPC3 is a non-selective cation channel linked to key signalling pathways that are affected in cerebellar ataxia. Furthermore, genetic mouse models of TRPC3 dysfunction display cerebellar ataxia, making the TRPC3 gene an excellent candidate for screening ataxic patients with unknown genetic aetiology. Here, we report a genetic screen for TRPC3 mutations in a cohort of 98 patients with genetically undefined late-onset cerebellar ataxia and further ten patients with undefined episodic ataxia. We identified a number of variants but no causative mutations in TRPC3. Our findings suggest that mutations in TRPC3 do not significantly contribute to the cause of late-onset and episodic human cerebellar ataxias

    Epileptogenic potential of mefloquine chemoprophylaxis: a pathogenic hypothesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mefloquine has historically been considered safe and well-tolerated for long-term malaria chemoprophylaxis, but prescribing it requires careful attention in order to rule out contraindications to its use. Contraindications include a history of certain neurological conditions that might increase the risk of seizure and other adverse events. The precise pathophysiological mechanism by which mefloquine might predispose those with such a history to seizure remains unclear.</p> <p>Presentation of the hypothesis</p> <p>Studies have demonstrated that mefloquine at doses consistent with chemoprophylaxis accumulates at high levels in brain tissue, which results in altered neuronal calcium homeostasis, altered gap-junction functioning, and contributes to neuronal cell death. This paper reviews the scientific evidence associating mefloquine with alterations in neuronal function, and it suggests the novel hypothesis that among those with the prevalent EPM1 mutation, inherited and mefloquine-induced impairments in neuronal physiologic safeguards might increase risk of GABAergic seizure during mefloquine chemoprophylaxis.</p> <p>Testing and implications of the hypothesis</p> <p>Consistent with case reports of tonic-clonic seizures occurring during mefloquine chemoprophylaxis among those with family histories of epilepsy, it is proposed here that a new contraindication to mefloquine use be recognized for people with EPM1 mutation and for those with a personal history of myoclonus or ataxia, or a family history of degenerative neurologic disorder consistent with EPM1. Recommendations and directions for future research are presented.</p

    Human Stiff-Person Syndrome IgG Induces Anxious Behavior in Rats

    Get PDF
    Background: Anxiety is a heterogeneous behavioral domain playing a role in a variety of neuropsychiatric diseases. While anxiety is the cardinal symptom in disorders such as panic disorder, co-morbid anxious behavior can occur in a variety of diseases. Stiff person syndrome (SPS) is a CNS disorder characterized by increased muscle tone and prominent agoraphobia and anxiety. Most patients have high-titer antibodies against glutamate decarboxylase (GAD) 65. The pathogenic role of these autoantibodies is unclear. Methodology/Principal Findings: We re-investigated a 53 year old woman with SPS and profound anxiety for GABA-A receptor binding in the amygdala with (11)C-flumazenil PET scan and studied the potential pathogenic role of purified IgG from her plasma filtrates containing high-titer antibodies against GAD 65. We passively transferred the IgG fraction intrathecally into rats and analyzed the effects using behavioral and in vivo electrophysiological methods. In cell culture, we measured the effect of patient IgG on GABA release from hippocampal neurons. Repetitive intrathecal application of purified patient IgG in rats resulted in an anxious phenotype resembling the core symptoms of the patient. Patient IgG selectively bound to rat amygdala, hippocampus, and frontal cortical areas. In cultured rat hippocampal neurons, patient IgG inhibited GABA release. In line with these experimental results, the GABA-A receptor binding potential was reduced in the patient’s amygdala/hippocampus complex. No motor abnormalities were found in recipient rats. Conclusion/Significance: The observations in rats after passive transfer lead us to propose that anxiety-like behavior can be induced in rats by passive transfer of IgG from a SPS patient positive for anti-GAD 65 antibodies. Anxiety, in this case, thus may be an antibody-mediated phenomenon with consecutive disturbance of GABAergic signaling in the amygdala region

    Targeting Several CAG Expansion Diseases by a Single Antisense Oligonucleotide

    Get PDF
    To date there are 9 known diseases caused by an expanded polyglutamine repeat, with the most prevalent being Huntington's disease. Huntington's disease is a progressive autosomal dominant neurodegenerative disorder for which currently no therapy is available. It is caused by a CAG repeat expansion in the HTT gene, which results in an expansion of a glutamine stretch at the N-terminal end of the huntingtin protein. This polyglutamine expansion plays a central role in the disease and results in the accumulation of cytoplasmic and nuclear aggregates. Here, we make use of modified 2′-O-methyl phosphorothioate (CUG)n triplet-repeat antisense oligonucleotides to effectively reduce mutant huntingtin transcript and protein levels in patient-derived Huntington's disease fibroblasts and lymphoblasts. The most effective antisense oligonucleotide, (CUG)7, also reduced mutant ataxin-1 and ataxin-3 mRNA levels in spinocerebellar ataxia 1 and 3, respectively, and atrophin-1 in dentatorubral-pallidoluysian atrophy patient derived fibroblasts. This antisense oligonucleotide is not only a promising therapeutic tool to reduce mutant huntingtin levels in Huntington's disease but our results in spinocerebellar ataxia and dentatorubral-pallidoluysian atrophy cells suggest that this could also be applicable to other polyglutamine expansion disorders as well

    Consensus Paper: Neuroimmune Mechanisms of Cerebellar Ataxias

    Full text link
    • …
    corecore