12,602 research outputs found

    Evaluation of alternative horizontal well designs for gas production from hydrate deposits in the Shenhu area, South China Sea

    Get PDF
    Gas hydrate deposits were confirmed in the Shenhu Area, the north slope of South China Sea during a drilling expedition in 2007. Hydrate deposits in the area are distributed in disseminated forms in forams-rich clay sediments with permeable overburden and underburden layers. Production of gas from such a type of hydrate deposits is very challenging. In this study, we develop a numerical approach for investigation of gas production strategies by horizontal wells and preliminary estimation of the production potential based on the limited data that are currently available. Numerical models are built to represent the typical hydrate deposits in the area, including the thickness of the Hydrate-Bearing Layer (HBL), hydrate saturation, water depth, temperature at the sea floor, initial thermal gradient and pressure distribution. The models are used to simulate the different production schemes and well designs. In this paper, production strategies of horizontal well system with combination of depressurization and thermal stimulation are investigated through numerical models. Gas production potential from the deposits and effectiveness of the different production methods are evaluated. The simulation results indicate that with current technology, gas production from Shenhu hydrate deposits may not be economically efficient for all the production strategies we have investigated. Copyright 2010, Society of Petroleum Engineers

    Comparative Evaluation of Action Recognition Methods via Riemannian Manifolds, Fisher Vectors and GMMs: Ideal and Challenging Conditions

    Full text link
    We present a comparative evaluation of various techniques for action recognition while keeping as many variables as possible controlled. We employ two categories of Riemannian manifolds: symmetric positive definite matrices and linear subspaces. For both categories we use their corresponding nearest neighbour classifiers, kernels, and recent kernelised sparse representations. We compare against traditional action recognition techniques based on Gaussian mixture models and Fisher vectors (FVs). We evaluate these action recognition techniques under ideal conditions, as well as their sensitivity in more challenging conditions (variations in scale and translation). Despite recent advancements for handling manifolds, manifold based techniques obtain the lowest performance and their kernel representations are more unstable in the presence of challenging conditions. The FV approach obtains the highest accuracy under ideal conditions. Moreover, FV best deals with moderate scale and translation changes

    Cost Analysis of the IMS Presence Service

    Full text link
    IMS (IP Multimedia Subsystem) is the technology that will merge the Internet (packet switching) with the cellular world (circuit switching). Presence is one of the basic services which is likely to become omnipresent in IMS (IP Multimedia Subsystem). It is the service that allows a user to be informed about the reachability, availability, and willingness of communication of another user. The flow of messages will be massive for large amount of publishers and watchers joining an IMS system, because of the security architecture of the IMS. Although the IETF engineers have proposed several solutions to reduce the signalling overhead to facilitate the presence service, the heavy traffic flows have been compromised with several factors like real time view and information segregation etc. In this paper, we propose a mathematical model to analyse the system-performance of the IMS presence service during heavy traffic. The model derives the cost functions that are based on the real parameters of the Presence server. Simulation results have been shown that provide useful insight into the system behaviour

    Development of text mining tools for information retrieval from patents

    Get PDF
    Biomedical literature is composed of an ever increasing number of publications in natural language. Patents are a relevant fraction of those, being important sources of information due to all the curated data from the granting process. However, their unstructured data turns the search of information a challenging task. To surpass that, Biomedical text mining (BioTM) creates methodologies to search and structure that data. Several BioTM techniques can be applied to patents. From those, Information Retrieval is the process where relevant data is obtained from collections of documents. In this work, a patent pipeline was developed and integrated intoFEDER -Federación Española de Enfermedades Raras(NORTE-01-0145-FEDER-000004)info:eu-repo/semantics/publishedVersio

    Electric Field-Tuned Topological Phase Transition in Ultra-Thin Na3Bi - Towards a Topological Transistor

    Full text link
    The electric field induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor [1-4]. In this scheme an electric field can switch 'on' the ballistic flow of charge and spin along dissipationless edges of the two-dimensional (2D) quantum spin Hall insulator [5-9], and when 'off' is a conventional insulator with no conductive channels. Such as topological transistor is promising for low-energy logic circuits [4], which would necessitate electric field-switched materials with conventional and topological bandgaps much greater than room temperature, significantly greater than proposed to date [6-8]. Topological Dirac semimetals(TDS) are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases [3,10-16]. Here we use scanning probe microscopy/spectroscopy (STM/STS) and angle-resolved photoelectron spectroscopy (ARPES) to show that mono- and bilayer films of TDS Na3Bi [3,17] are 2D topological insulators with bulk bandgaps >400 meV in the absence of electric field. Upon application of electric field by doping with potassium or by close approach of the STM tip, the bandgap can be completely closed then re-opened with conventional gap greater than 100 meV. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy kT = 25 meV at room temperature, suggest that ultrathin Na3Bi is suitable for room temperature topological transistor operation

    Relationship between site of oesophageal cancer and areca chewing and smoking in Taiwan

    Get PDF
    Among 309 male patients, those who had heavily consumed betel and tobacco were more likely than nonchewers (OR = 2. 91; 95% CI = 1.36-6.25) and nonsmokers (OR = 2.49; 95% CI = 1.02-6.08) to develop cancer in the upper and middle third of the oesophagus, respectively; the effects of alcohol did not dominate in any third

    Transport in polymer-supported chemically-doped CVD graphene

    Get PDF
    In this study we report on the electron transport in flexible-transparent polymer supported chemically doped chemical vapour deposited (CVD) graphene.Oppenheimer Resaerch Trus
    corecore