12 research outputs found

    Aerosol generation by metered-dose inhalers containing dimethyl ether/propane inverse microemulsions

    No full text
    Water soluble compounds were incorporated into metered-dose inhalers (MDIs) by using water-in-propellant lecithin microemulsions, in which dimethyl ether (DME) and propane acted as both continuous phase and propellant. Lecithin, water, and water soluble compounds were added to glass MDI containers, valves were crimped on, and propellants were added using a pressure burette. Aerosols were produced using commercially available actuators, and inertial impaction was used to determine the mass median aerodynamic diameter (MMAD), geometric standard deviation (GSD), and fine particle fraction (FPF) of the resulting aerosols. The DME/propane/lecithin, microemulsion MDIs generated aerosols with particle size distributions suitable for pulmonary delivery (eg, MMAD 3.1 μm, FPF 59% for DME with lecithin content 3%, water content 2.5% [wt/wt]). Increasing water concentration (up to 8% wt/wt) was correlated with a reduction in FPF. Freezing and rewarming had no adverse effect on MMAD, GSD, or FPF. Storage of microemulsion samples for up to 3 weeks did not adversely affect the MMAD, GSD, or FPF. This approach may enable the pulmonary delivery of water soluble therapeutic agents via MDIs

    Delivery Devices for Inhaled Asthma Medication

    No full text

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity.Peer reviewe
    corecore