10 research outputs found

    Imaginarios geogrĂĄficos y significaciĂłn cultural del territorio de Usme

    Get PDF
    Spa: Esta investigación le da un valor al al territorio de Usme a partir de un anålisis geogråfico del paisaje, empleando los lentes del patrimonio cultural, en función de su pasado, de las huellas inscritas en el territorio, y en lo que este representa para la población Usmeña en la actualidad (un trabajo sue generis, en tanto se aborda el estudio del territorio como unidad de anålisis patrimonial, superando así el caråcter centrado en la valoración de objetos culturales aislados).bibliografía y webgrafía: påginas 134-141.MaestríaMagister en Patrimonio Cultura

    Molecular Basis of Cannabis-Induced Schizophrenia-Relevant Behaviours: Insights from Animal Models

    No full text
    Introduction: Cannabis use is a well-established component risk factor for schizophrenia; however, the mechanisms by which cannabis use increases schizophrenia risk are unclear. Animal models can elucidate mechanisms by which chronic cannabinoid treatment can induce schizophrenia-relevant neural changes, in a standardised manner often not possible using patient-based data. Methods: We review recent literature (within the past 10 years) using animal models of chronic and subchronic treatment with cannabinoids which target the cannabinoid 1 receptor [i.e. ∆9-tetrahydrocannabinol, CP55,940 and WIN55,212-2]. Schizophrenia-relevant behavioural consequences of chronic cannabinoid treatment are first briefly summarised, followed by a detailed account of changes to several receptor systems [e.g. cannabinoid, dopaminergic, glutamatergic, γ-aminobutyric acid (GABAe)rgic, serotonergic, noradrenergic], dendritic spine morphology and inflammatory markers following chronic cannabinoids. We distinguish between adolescent and adult cannabinoid treatments, to determine if adolescence is a period of susceptibility to schizophrenia-relevant molecular changes. Results: Chronic cannabinoid treatment induces behaviours relevant to positive, negative and cognitive symptoms of schizophrenia. Chronic cannabinoids also cause region- and subtype-specific changes to receptor systems (e.g. cannabinoid, dopaminergic, glutamatergic, GABAergic), as well as changes in dendritic spine morphology and upregulation of inflammatory markers. These changes often align with molecular changes observed in post-mortem tissue from schizophrenia patients and correspond with schizophrenia-relevant behavioural change in rodents. There is some indication that adolescence is a period of susceptibility to cannabinoid-induced schizophrenia-relevant neural change, but more research in this field is required to confirm this hypothesis. Conclusions: Animal models indicate several molecular mechanisms by which chronic cannabinoids contribute to schizophrenia-relevant neural and behavioural change. It is likely that a number of these mechanisms are simultaneously impacted by chronic cannabinoids, thereby increasing schizophrenia risk in individuals who use cannabis. Understanding how cannabinoids can affect several molecular targets provides critical insight into the complex relationship between cannabis use and schizophrenia risk

    Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial.

    Get PDF
    Importance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited. Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19. Design, Setting, and Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020. Interventions: The corticosteroid domain randomized participants to a fixed 7-day course of intravenous hydrocortisone (50 mg or 100 mg every 6 hours) (n = 143), a shock-dependent course (50 mg every 6 hours when shock was clinically evident) (n = 152), or no hydrocortisone (n = 108). Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were assigned -1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%). Results: After excluding 19 participants who withdrew consent, there were 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (n = 137), shock-dependent (n = 146), and no (n = 101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. The mean age for the 3 groups ranged between 59.5 and 60.4 years; most patients were male (range, 70.6%-71.5%); mean body mass index ranged between 29.7 and 30.9; and patients receiving mechanical ventilation ranged between 50.0% and 63.5%. For the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively, the median organ support-free days were 0 (IQR, -1 to 15), 0 (IQR, -1 to 13), and 0 (-1 to 11) days (composed of 30%, 26%, and 33% mortality rates and 11.5, 9.5, and 6 median organ support-free days among survivors). The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock-dependent hydrocortisone compared with no hydrocortisone. Serious adverse events were reported in 4 (3%), 5 (3%), and 1 (1%) patients in the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively. Conclusions and Relevance: Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support-free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707

    Barriers of Influenza Vaccination Intention and Behavior – A Systematic Review of Influenza Vaccine Hesitancy, 2005 – 2016

    No full text

    Socioeconomic Deprivation, Adverse Childhood Experiences and Medical Disorders in Adulthood: Mechanisms and Associations

    No full text
    corecore