44 research outputs found

    Protein-enriched meal replacements do not adversely affect liver, kidney or bone density: an outpatient randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is concern that recommending protein-enriched meal replacements as part of a weight management program could lead to changes in biomarkers of liver or renal function and reductions in bone density. This study was designed as a placebo-controlled clinical trial utilizing two isocaloric meal plans utilizing either a high protein-enriched (HP) or a standard protein (SP) meal replacement in an outpatient weight loss program.</p> <p>Subjects/methods</p> <p>100 obese men and women over 30 years of age with a body mass index (BMI) between 27 to 40 kg/m<sup>2 </sup>were randomized to one of two isocaloric weight loss meal plans 1). HP group: providing 2.2 g protein/kg of lean body mass (LBM)/day or 2). SP group: providing 1.1 g protein/kg LBM/day. Meal replacement (MR) was used twice daily (one meal, one snack) for 3 months and then once a day for 9 months. Body weight, lipid profiles, liver function, renal function and bone density were measured at baseline and 12 months.</p> <p>Results</p> <p>Seventy subjects completed the study. Both groups lost weight (HP -4.29 ± 5.90 kg vs. SP -4.66 ± 6.91 kg, p < 0.01) and there was no difference in weight loss observed between the groups at one year. There was no significant change noted in liver function [AST (HP -2.07 ± 10.32 U/L, p = 0.28; SP 0.27 ± 6.67 U/L, p = 0.820), ALT (HP -1.03 ± 10.08 U/L, p = 0.34; SP -2.6 ± 12.51 U/L, p = 0.24), bilirubin (HP 0.007 ± 0.33, U/L, p = 0.91; SP 0.07 ± 0.24 U/L, p = 0.120), alkaline phosphatase (HP 2.00 ± 9.07 U/L, p = 0.240; SP -2.12 ± 11.01 U/L, p = 0.280)], renal function [serum creatinine (HP 0.31 ± 1.89 mg/dL, p = 0.380; SP -0.05 ± 0.15 mg/dL, p = 0.060), urea nitrogen (HP 1.33 ± 4.68 mg/dL, p = 0.130; SP -0.24 ± 3.03 mg/dL, p = 0.650), 24 hour urine creatinine clearance (HP -0.02 ± 0.16 mL/min, p = 0.480; SP 1.18 ± 7.53 mL/min, p = 0.400), and calcium excretion (HP -0.41 ± 9.48 mg/24 hours, p = 0.830; SP -0.007 ± 6.76 mg/24 hours, p = 0.990)] or in bone mineral density by DEXA (HP 0.04 ± 0.19 g/cm<sup>2</sup>, p = 0.210; SP -0.03 ± 0.17 g/cm<sup>2</sup>, p = 0.320) in either group over one year.</p> <p>Conclusions</p> <p>These studies demonstrate that protein-enriched meals replacements as compared to standard meal replacements recommended for weight management do not have adverse effects on routine measures of liver function, renal function or bone density at one year. Clinicaltrial.gov: NCT01030354.</p

    Physiological and Psychological Effects of Deception on Pacing Strategy and Performance: A Review

    Get PDF
    The aim of an optimal pacing strategy during exercise is to enhance performance whilst ensuring physiological limits are not surpassed, which has been shown to result in a metabolic reserve at the end of the exercise. There has been debate surrounding the theoretical models that have been proposed to explain how pace is regulated, with more recent research investigating a central control of exercise regulation. Deception has recently emerged as a common, practical approach to manipulate key variables during exercise. There are a number of ways in which deception interventions have been designed, each intending to gain particular insights into pacing behaviour and performance. Deception methodologies can be conceptualised according to a number of dimensions such as deception timing (prior to or during exercise), presentation frequency (blind, discontinuous or continuous) and type of deception (performance, biofeedback or environmental feedback). However, research evidence on the effects of deception has been perplexing and the use of complex designs and varied methodologies makes it difficult to draw any definitive conclusions about how pacing strategy and performance are affected by deception. This review examines existing research in the area of deception and pacing strategies, and provides a critical appraisal of the different methodological approaches used to date. It is hoped that this analysis will inform the direction and methodology of future investigations in this area by addressing the mechanisms through which deception impacts upon performance and by elucidating the potential application of deception techniques in training and competitive settings

    Pacing and Decision Making in Sport and Exercise: The Roles of Perception and Action in the Regulation of Exercise Intensity

    Get PDF
    In pursuit of optimal performance, athletes and physical exercisers alike have to make decisions about how and when to invest their energy. The process of pacing has been associated with the goal-directed regulation of exercise intensity across an exercise bout. The current review explores divergent views on understanding underlying mechanisms of decision making in pacing. Current pacing literature provides a wide range of aspects that might be involved in the determination of an athlete's pacing strategy, but lacks in explaining how perception and action are coupled in establishing behaviour. In contrast, decision-making literature rooted in the understanding that perception and action are coupled provides refreshing perspectives on explaining the mechanisms that underlie natural interactive behaviour. Contrary to the assumption of behaviour that is managed by a higher-order governor that passively constructs internal representations of the world, an ecological approach is considered. According to this approach, knowledge is rooted in the direct experience of meaningful environmental objects and events in individual environmental processes. To assist a neuropsychological explanation of decision making in exercise regulation, the relevance of the affordance competition hypothesis is explored. By considering pacing as a behavioural expression of continuous decision making, new insights on underlying mechanisms in pacing and optimal performance can be developed. © 2014 Springer International Publishing Switzerland

    Hyponatremia revisited: Translating physiology to practice

    Get PDF
    The complexity of hyponatremia as a clinical problem is likely caused by the opposite scenarios that accompany this electrolyte disorder regarding pathophysiology (depletional versus dilutional hyponatremia, high versus low vasopressin levels) and therapy (rapid correction to treat cerebral edema versus slow correction to prevent osmotic demyelination, fluid restriction versus fluid resuscitation). For a balanced differentiation between these opposites, an understanding of the pathophysiology of hyponatremia is required. Therefore, in this review an attempt is made to translate the physiology of water balance regulation to strategies that improve the clinical management of hyponatremia. A physiology-based approach to the patient with hyponatremia is presented, first addressing the possibility of acute hyponatremia, and then asking if and if so why vasopressin is secreted non-osmotically. Additional diagnostic recommendations are not to rely too heavily of the assessment of the extracellular fluid volume, to regard the syndrome of inappropriate antidiuresis as a diagnosis of exclusion, and to rationally investigate the pathophysiology of hyponatremia rather than to rely on isolated laboratory values with arbitrary cutoff values. The features of the major hyponatremic disorders are discussed, including diuretic-induced hyponatremia, adrenal and pituitary insufficiency, the syndrome of inappropriate antidiuresis, cerebral salt wasting, and exercise-associated hyponatremia. The treatment of hyponatremia is reviewed from simple saline solutions to the recently introduced vasopressin receptor antagonists, including their promises and limitations. Given the persistently high rates of hospital-acquired hyponatremia, the importance of improving the management of hyponatremia seems both necessary and achievable. Copyrigh

    Obesity-Related Oxidative Stress: the Impact of Physical Activity and Diet Manipulation

    Get PDF
    Obesity-related oxidative stress, the imbalance between pro-oxidants and antioxidants (e.g., nitric oxide), has been linked to metabolic and cardiovascular disease, including endothelial dysfunction and atherosclerosis. Reactive oxygen species (ROS) are essential for physiological functions including gene expression, cellular growth, infection defense, and modulating endothelial function. However, elevated ROS and/or diminished antioxidant capacity leading to oxidative stress can lead to dysfunction. Physical activity also results in an acute state of oxidative stress. However, it is likely that chronic physical activity provides a stimulus for favorable oxidative adaptations and enhanced physiological performance and physical health, although distinct responses between aerobic and anaerobic activities warrant further investigation. Studies support the benefits of dietary modification as well as exercise interventions in alleviating oxidative stress susceptibility. Since obese individuals tend to demonstrate elevated markers of oxidative stress, the implications for this population are significant. Therefore, in this review our aim is to discuss (i) the role of oxidative stress and inflammation as associated with obesity-related diseases, (ii) the potential concerns and benefits of exercise-mediated oxidative stress, and (iii) the advantageous role of dietary modification, including acute or chronic caloric restriction and vitamin D supplementation

    ISSN exercise & sport nutrition review: research & recommendations

    Get PDF
    Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients

    Hyponatremia in the intensive care unit: How to avoid a Zugzwang situation?

    Get PDF

    Spatial and temporal trends of the Stockholm Convention POPs in mothers’ milk — a global review

    Get PDF
    corecore