180 research outputs found

    Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements

    Get PDF
    In this work, the use of foam-like glass-ceramic scaffolds as trabecular coatings on ceramic prosthetic devices to enhance implant osteointegration is proposed. The feasibility of this innovative device was explored in a simplified, flat geometry: glass-ceramic scaffolds, prepared by polymeric sponge replication and mimicking the trabecular architecture of cancellous bone, were joined to alumina square substrates by a dense glass coating (interlayer). The role played by different formulations of starting glasses was examined, with particular care to the effect on the mechanical properties and bioactivity of the final coating. Microindentations at the coating/substrate interface and tensile tests were performed to evaluate the bonding strength between the sample's components. In vitro bioactive behaviour was assessed by soaking in simulated body fluid and evaluating the apatite formation on the surface and inside the pores of the trabecular coating. The concepts disclosed in the present study can have a significant impact in the field of implantable devices, suggesting a valuable alternative to traditional, often invasive bone-prosthesis fixatio

    Short-Lived Trace Gases in the Surface Ocean and the Atmosphere

    Get PDF
    The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science

    In vitro comparison of the effects of rough and polished stem surface finish on pressure generation in cemented hip arthroplasty

    Get PDF
    Background and purpose High pressures around implants can cause bone lysis and loosening. We investigated how pressures are generated around cemented femoral stems

    The role of inflammation in epilepsy.

    Get PDF
    Epilepsy is the third most common chronic brain disorder, and is characterized by an enduring predisposition to generate seizures. Despite progress in pharmacological and surgical treatments of epilepsy, relatively little is known about the processes leading to the generation of individual seizures, and about the mechanisms whereby a healthy brain is rendered epileptic. These gaps in our knowledge hamper the development of better preventive treatments and cures for the approximately 30% of epilepsy cases that prove resistant to current therapies. Here, we focus on the rapidly growing body of evidence that supports the involvement of inflammatory mediators-released by brain cells and peripheral immune cells-in both the origin of individual seizures and the epileptogenic process. We first describe aspects of brain inflammation and immunity, before exploring the evidence from clinical and experimental studies for a relationship between inflammation and epilepsy. Subsequently, we discuss how seizures cause inflammation, and whether such inflammation, in turn, influences the occurrence and severity of seizures, and seizure-related neuronal death. Further insight into the complex role of inflammation in the generation and exacerbation of epilepsy should yield new molecular targets for the design of antiepileptic drugs, which might not only inhibit the symptoms of this disorder, but also prevent or abrogate disease pathogenesis

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Analyzing the Impacts of Off-Road Vehicle (ORV) Trails on Watershed Processes in Wrangell-St. Elias National Park and Preserve, Alaska

    Get PDF
    Trails created by off-road vehicles (ORV) in boreal lowlands are known to cause local impacts, such as denuded vegetation, soil erosion, and permafrost thaw, but impacts on stream and watershed processes are less certain. In Wrangell-St. Elias National Park and Preserve (WRST), Alaska, ORV trails have caused local resource damage in intermountain lowlands with permafrost soils and abundant wetlands and there is a need to know whether these impacts are more extensive. Comparison of aerial photography from 1957, 1981, and 2004 coupled with ground surveys in 2009 reveal an increase in trail length and number and show an upslope expansion of a trail system around points of stream channel initiation. We hypothesized that these impacts could also cause premature initiation and headward expansion of channels because of lowered soil resistance and greater runoff accumulation as trails migrate upslope. Soil monitoring showed earlier and deeper thaw of the active layer in and adjacent to trails compared to reference sites. Several rainfall-runoff events during the summer of 2009 showed increased and sustained flow accumulation below trail crossings and channel shear forces sufficient to cause headward erosion of silt and peat soils. These observations of trail evolution relative to stream and wetland crossings together with process studies suggest that ORV trails are altering watershed processes. These changes in watershed processes appear to result in increasing drainage density and may also alter downstream flow regimes, water quality, and aquatic habitat. Addressing local land-use disturbances in boreal and arctic parklands with permafrost soils, such as WRST, where responses to climate change may be causing concurrent shifts in watershed processes, represents an important challenge facing resource managers

    The instantaneous helical axis of the subtalar and talocrural joints: a non-invasive in vivo dynamic study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An understanding of rear-foot (talocrural and subtalar joints) kinematics is critical for diagnosing foot pathologies, designing total ankle implants, treating rear-foot injuries and quantifying gait abnormalities. The majority of kinematic data available have been acquired through static cadaver work or passive <it>in vivo </it>studies. The applicability of these data to dynamic <it>in vivo </it>situations remains unknown. Thus, the purpose of this study was to fully quantify subtalar, talocrural and calcaneal-tibial <it>in vivo </it>kinematics in terms of the instantaneous helical axis (IHA) in twenty-five healthy ankles during a volitional activity that simulated single-leg toe-raises with partial-weight support, requiring active muscle control.</p> <p>Methods</p> <p>Subjects were each placed supine in a 1.5 T MRI and asked to repeat this simulated toe-raise while a full sagittal-cine-phase contrast (dynamic) MRI dataset was acquired. From the cine-phase contrast velocity a full kinematic description for each joint was derived.</p> <p>Results</p> <p>Nearly all motion quantified at the calcaneal-tibial joint was attributable to the talocrural joint. The subtalar IHA orientation and position were highly variable; whereas, the talocrural IHA orientation and position were extremely consistent.</p> <p>Conclusion</p> <p>The talocrural was well described by the IHA and could be modeled as a fixed-hinge joint, whereas the subtalar could not be.</p

    Similar TKA designs with differences in clinical outcome: A randomized, controlled trial of 77 knees with a mean follow-up of 6 years

    Get PDF
    Contains fulltext : 96347.pdf (publisher's version ) (Open Access)Background and purpose To try to improve the outcome of our TKAs, we started to use the CKS prosthesis. However, in a retrospective analysis this design tended to give worse results. We therefore conducted a randomized, controlled trial comparing this CKS prosthesis and our standard PFC prosthesis. Because many randomized studies between different TKA concepts generally fail to show superiority of a particular design, we hypothesized that these seemingly similar designs would not lead to any difference in clinical outcome. Patients and methods 82 patients (90 knees) were randomly allocated to one or other prosthesis, and 39 CKS prostheses and 38 PFC prostheses could be followed for mean 5.6 years. No patients were lost to follow-up. At each follow-up, patients were evaluated clinically and radiographically, and the KSS, WOMAC, VAS patient satisfaction scores and VAS for pain were recorded. Results With total Knee Society score (KSS) as primary endpoint, there was a difference in favor of the PFC group at final follow-up (p = 0.04). Whereas there was one revision in the PFC group, there were 6 revisions in the CKS group (p = 0.1). The survival analysis with any reoperation as endpoint showed better survival in the PFC group (97% (95% CI: 92-100) for the PFC group vs. 79% (95% CI: 66-92) for the CKS group) (p = 0.02). Interpretation Our hypothesis that there would be no difference in clinical outcome was rejected in this study. The PFC system showed excellent results that were comparable to those in previous reports. The CKS design had differences that had considerable negative consequences clinically. The relatively poor results have discouraged us from using this design
    corecore