292 research outputs found
Post-Lie Algebras, Factorization Theorems and Isospectral-Flows
In these notes we review and further explore the Lie enveloping algebra of a
post-Lie algebra. From a Hopf algebra point of view, one of the central
results, which will be recalled in detail, is the existence of a second Hopf
algebra structure. By comparing group-like elements in suitable completions of
these two Hopf algebras, we derive a particular map which we dub post-Lie
Magnus expansion. These results are then considered in the case of
Semenov-Tian-Shansky's double Lie algebra, where a post-Lie algebra is defined
in terms of solutions of modified classical Yang-Baxter equation. In this
context, we prove a factorization theorem for group-like elements. An explicit
exponential solution of the corresponding Lie bracket flow is presented, which
is based on the aforementioned post-Lie Magnus expansion.Comment: 49 pages, no-figures, review articl
Ipl1/aurora kinase suppresses S-CDK-driven spindle formation during prophase I to ensure chromosome integrity during meiosis
Cells coordinate spindle formation with DNA repair and morphological modifications to chromosomes prior to their segregation to prevent cell division with damaged chromosomes. Here we uncover a novel and unexpected role for Aurora kinase in preventing the formation of spindles by Clb5-CDK (S-CDK) during meiotic prophase I and when the DDR is active in budding yeast. This is critical since S-CDK is essential for replication during premeiotic S-phase as well as double-strand break induction that facilitates meiotic recombination and, ultimately, chromosome segregation. Furthermore, we find that depletion of Cdc5 polo kinase activity delays spindle formation in DDR-arrested cells and that ectopic expression of Cdc5 in prophase I enhances spindle formation, when Ipl1 is depleted. Our findings establish a new paradigm for Aurora kinase function in both negative and positive regulation of spindle dynamics
Phytoplankton dynamics in relation to seasonal variability and upwelling and relaxation patterns at the mouth of Ria de Aveiro (West Iberian Margin) over a four-year period
From June 2004 to December 2007, samples were weekly collected at a fixed station located at the mouth of Ria de Aveiro (West Iberian Margin). We examined the seasonal and inter-annual fluctuations in composition and community structure of the phytoplankton in relation to the main environmental drivers and assessed the influence of the oceano-graphic regime, namely changes in frequency and intensity of upwelling events, over the dynamics of the phytoplankton assemblage. The samples were consistently handled and a final subset of 136 OTUs (taxa with relative abundance > 0.01%) was subsequently submitted to various multivariate analyses. The phytoplankton assemblage showed significant changes at all temporal scales but with an overriding importance of seasonality over longer-(inter-annual) or shorter-term fluctuations (upwelling-related). Sea-surface temperature, salinity and maximum upwelling index were retrieved as the main driver of seasonal change. Seasonal signal was most evident in the fluctuations of chlorophyll a concentration and in the high turnover from the winter to spring phytoplankton assemblage. The seasonal cycle of production and succession was disturbed by upwelling events known to disrupt thermal stratification and induce changes in the phytoplankton assemblage. Our results indicate that both the frequency and intensity of physical forcing were important drivers of such variability, but the outcome in terms of species composition was highly dependent on the available local pool of species and the timing of those events in relation to the seasonal cycle. We conclude that duration, frequency and intensity of upwelling events, which vary seasonally and inter-annually, are paramount for maintaining long-term phytoplankton diversity likely by allowing unstable coexistence and incorporating species turnover at different scales. Our results contribute to the understanding of the complex mechanisms of coastal phytoplankton dynamics in relation to changing physical forcing which is fundamental to improve predictability of future prospects under climate change.Portuguese Foundation for Science and Technology (FCT, Portugal) [SFRH/BPD/ 94562/2013]; FEDER funds; national funds; CESAM [UID/AMB/50017]; FCT/MEC through national funds; FEDERinfo:eu-repo/semantics/publishedVersio
Single-Scale Natural SUSY
We consider the prospects for natural SUSY models consistent with current
data. Recent constraints make the standard paradigm unnatural so we consider
what could be a minimal extension consistent with what we now know. The most
promising such scenarios extend the MSSM with new tree-level Higgs interactions
that can lift its mass to at least 125 GeV and also allow for flavor-dependent
soft terms so that the third generation squarks are lighter than current bounds
on the first and second generation squarks. We argue that a common feature of
almost all such models is the need for a new scale near 10 TeV, such as a scale
of Higgsing or confinement of a new gauge group. We consider the question
whether such a model can naturally derive from a single mass scale associated
with supersymmetry breaking. Most such models simply postulate new scales,
leaving their proximity to the scale of MSSM soft terms a mystery. This
coincidence problem may be thought of as a mild tuning, analogous to the usual
mu problem. We find that a single mass scale origin is challenging, but suggest
that a more natural origin for such a new dynamical scale is the gravitino
mass, m_{3/2}, in theories where the MSSM soft terms are a loop factor below
m_{3/2}. As an example, we build a variant of the NMSSM where the singlet S is
composite, and the strong dynamics leading to compositeness is triggered by
masses of order m_{3/2} for some fields. Our focus is the Higgs sector, but our
model is compatible with a light stop (with the other generation squarks heavy,
or with R-parity violation or another mechanism to hide them from current
searches). All the interesting low-energy mass scales, including linear terms
for S playing a key role in EWSB, arise dynamically from the single scale
m_{3/2}. However, numerical coefficients from RG effects and wavefunction
factors in an extra dimension complicate the otherwise simple story.Comment: 32 pages, 3 figures; version accepted by JHE
The Asp298 allele of endothelial nitric oxide synthase is a risk factor for myocardial infarction among patients with type 2 diabetes mellitus
Background: Endothelial dysfunction plays a central role in atherosclerotic progression and cardiovascular complications of type 2 diabetes mellitus (T2DM). Given the role of nitric oxide in the vascular system, we aimed to test hypotheses of synergy between the common endothelial nitric oxide synthase (eNOS) Asp(298) allele and T2DM in predisposing to acute myocardial infarction (AMI). Methods: In a population-based patient survey with 403 persons with T2DM and 799 healthy subjects from the population without diabetes or hypertension, we analysed the relation between T2DM, sex and the eNOS Asp(298) allele versus the risk for AMI. Results: In an overall analysis, T2DM was a significant independent risk factor for AMI. In patients with T2DM, homozygosity for the eNOS Asp(298) allele was a significant risk factor (HR 3.12 [1.49-6.56], p = 0.003), but not in subjects without diabetes or hypertension. Compared to wild-type non-diabetic subjects, all patients with T2DM had a significantly increased risk of AMI regardless of genotype. This risk was however markedly higher in patients with T2DM homozygous for the Asp(298) allele (HR 7.20 [3.01-17.20], p < 0.001), independent of sex, BMI, systolic blood pressure, serum triglycerides, HDL -cholesterol, current smoking, and leisure time physical activity. The pattern seemed stronger in women than in men. Conclusion: We show here a strong independent association between eNOS genotype and AMI in patients with T2DM. This suggests a synergistic effect of the eNOS Asp(298) allele and diabetes, and confirms the role of eNOS as an important pathological bottleneck for cardiovascular disease in patients with T2DM
Micro-algae come of age as a platform for recombinant protein production
A complete set of genetic tools is still being developed for the micro-alga Chlamydomonas reinhardtii. Yet even with this incomplete set, this photosynthetic single-celled plant has demonstrated significant promise as a platform for recombinant protein expression. In recent years, techniques have been developed that allow for robust expression of genes from both the nuclear and plastid genome. With these advances, many research groups have examined the pliability of this and other micro-algae as biological machines capable of producing recombinant peptides and proteins. This review describes recent successes in recombinant protein production in Chlamydomonas, including production of complex mammalian therapeutic proteins and monoclonal antibodies at levels sufficient for production at economic parity with existing production platforms. These advances have also shed light on the details of algal protein production at the molecular level, and provide insight into the next steps for optimizing micro-algae as a useful platform for the production of therapeutic and industrially relevant recombinant proteins
Array-CGH in patients with Kabuki-like phenotype: Identification of two patients with complex rearrangements including 2q37 deletions and no other recurrent aberration
Background: Kabuki syndrome (KS) is a multiple congenital anomaly syndrome characterized by specific facial features, mild to moderate mental retardation, postnatal growth delay, skeletal abnormalities, and unusual dermatoglyphic patterns with prominent fingertip pads. A 3.5 Mb duplication at 8p23.1-p22 was once reported as a specific alteration in KS but has not been confirmed in other patients. The molecular basis of KS remains unknown. Methods: We have studied 16 Spanish patients with a clinical diagnosis of KS or KS-like to search for genomic imbalances using genome-wide array technologies. All putative rearrangements were confirmed by FISH, microsatellite markers and/or MLPA assays, which also determined whether the imbalance was de novo or inherited. Results: No duplication at 8p23.1-p22 was observed in our patients. We detected complex rearrangements involving 2q in two patients with Kabuki-like features: 1) a de novo inverted duplication of 11 Mb with a 4.5 Mb terminal deletion, and 2) a de novo 7.2 Mb-terminal deletion in a patient with an additional de novo 0.5 Mb interstitial deletion in 16p. Additional copy number variations (CNV), either inherited or reported in normal controls, were identified and interpreted as polymorphic variants. No specific CNV was significantly increased in the KS group. Conclusion: Our results further confirmed that genomic duplications of 8p23 region are not a common cause of KS and failed to detect other recurrent rearrangement causing this disorder. The detection of two patients with 2q37 deletions suggests that there is a phenotypic overlap between the two conditions, and screening this region in the Kabuki-like patients should be considered.This work was funded by grants from the Spanish Ministry of Health (FIS PI042063), Genome Spain and the European Commission (FP6-2005-037627). IC was supported by a Juan de la Cierva Postdoctoral fellowship
Global Transcriptome and Deletome Profiles of Yeast Exposed to Transition Metals
A variety of pathologies are associated with exposure to supraphysiological concentrations of essential metals and to non-essential metals and metalloids. The molecular mechanisms linking metal exposure to human pathologies have not been clearly defined. To address these gaps in our understanding of the molecular biology of transition metals, the genomic effects of exposure to Group IB (copper, silver), IIB (zinc, cadmium, mercury), VIA (chromium), and VB (arsenic) elements on the yeast Saccharomyces cerevisiae were examined. Two comprehensive sets of metal-responsive genomic profiles were generated following exposure to equi-toxic concentrations of metal: one that provides information on the transcriptional changes associated with metal exposure (transcriptome), and a second that provides information on the relationship between the expression of βΌ4,700 non-essential genes and sensitivity to metal exposure (deletome). Approximately 22% of the genome was affected by exposure to at least one metal. Principal component and cluster analyses suggest that the chemical properties of the metal are major determinants in defining the expression profile. Furthermore, cells may have developed common or convergent regulatory mechanisms to accommodate metal exposure. The transcriptome and deletome had 22 genes in common, however, comparison between Gene Ontology biological processes for the two gene sets revealed that metal stress adaptation and detoxification categories were commonly enriched. Analysis of the transcriptome and deletome identified several evolutionarily conserved, signal transduction pathways that may be involved in regulating the responses to metal exposure. In this study, we identified genes and cognate signaling pathways that respond to exposure to essential and non-essential metals. In addition, genes that are essential for survival in the presence of these metals were identified. This information will contribute to our understanding of the molecular mechanism by which organisms respond to metal stress, and could lead to an understanding of the connection between environmental stress and signal transduction pathways
CD98 Increases Renal Epithelial Cell Proliferation by Activating MAPKs
CD98 heavy chain (CD98hc) is a multifunctional transmembrane spanning scaffolding protein whose extracellular domain binds with light chain amino acid transporters (Lats) to form the heterodimeric amino acid transporters (HATs). It also interacts with Ξ²1 and Ξ²3 integrins by its transmembrane and cytoplasmic domains. This interaction is proposed to be the mechanism whereby CD98 mediates cell survival and growth via currently undefined signaling pathways. In this study, we determined whether the critical function of CD98-dependent amino acid transport also plays a role in cell proliferation and defined the signaling pathways that mediate CD98-dependent proliferation of murine renal inner medullary collecting duct (IMCD) cells. We demonstrate that downregulating CD98hc expression resulted in IMCD cell death. Utilizing overexpression studies of CD98hc mutants that either lacked a cytoplasmic tail or were unable to bind to Lats we showed that CD98 increases serum-dependent cell proliferation by a mechanism that requires the CD98hc cytoplasmic tail. We further demonstrated that CD98-dependent amino acid transport increased renal tubular epithelial cell proliferation by a mechanism that does not require the CD98hc cytoplasmic tail. Both these mechanisms of increased renal tubular epithelial cell proliferation are mediated by Erk and p38 MAPK signaling. Although increased amino transport markedly activated mTor signaling, this pathway did not alter cell proliferation. Thus, these studies demonstrate that in IMCD cells, the cytoplasmic and extracellular domains of CD98hc regulate cell proliferation by distinct mechanisms that are mediated by common MAPK signaling pathways
COPD uncovered: an international survey on the impact of chronic obstructive pulmonary disease [COPD] on a working age population
Background: Approximately 210 million people are estimated to have chronic obstructive pulmonary disease [COPD] worldwide. The burden of disease is known to be high, though less is known about those of a younger age. The aim of this study was to investigate the wider personal, economic and societal burden of COPD on a cross country working-age cohort. Methods: A cross-country [Brazil, China, Germany, Turkey, US, UK] cross-sectional survey methodology was utilised to answer the research questions. 2426 participants aged 45-67 recruited via a number of recruitment methods specific to each country completed the full survey. Inclusion criteria were a recalled physician diagnosis of COPD, a smoking history of > 10 pack years and the use of COPD medications in the previous 3 months prior to questioning. The survey included items from the validated Work Productivity and Activity Impairment [WPAI] scale and the EuroQoL 5 Dimension [EQ-5D] scale. Disease severity was measured using the 5-point MRC [Medical Research Council] dyspnoea scale as a surrogate measure. Results: 64% had either moderate [n = 1012] or severe [n = 521] COPD, although this varied by country. 75% of the cohort reported at least one comorbid condition. Quality of life declined with severity of illness [mild, mean EQ-5D score = 0.84; moderate 0.58; severe 0.41]. The annual cost of healthcare utilisation [excluding treatment costs and diagnostic tests] per individual was estimated to be 880 [556] pound per annum and lifetime losses of 596,000 [377,000] pound for the cohort. 447 [similar to 40%] of the working population had retired prematurely because of COPD incurring individual estimated lifetime income losses of 141 m [89.6 pound m]. As the mean age of retirees was 58.3 and average time since retirement was 4 years, this suggests the average age of retirement is around 54. This would mean a high societal and economic impact in all study countries, particularly where typical state retirement ages are higher, for example in Brazil, Germany and the UK [65] and the US [65,66,67], compared to Turkey [58 for women, 60 for men] and China [60]. Conclusions: Although generalisation across a broader COPD population is limited due to the varied participant recruitment methods, these data nevertheless suggest that COPD has significant personal, economic and societal burden on working age people. Further efforts to improve COPD diagnosis and management are required
- β¦