30 research outputs found

    Genomic signatures of local adaptation reveal source-sink dynamics in a high gene flow fish species

    Get PDF
    Understanding source-sink dynamics is important for conservation management, particularly when climatic events alter species' distributions. Following a 2011 'marine heatwave' in Western Australia, we observed high recruitment of the endemic fisheries target species Choerodon rubescens, towards the cooler (southern) end of its distribution. Here, we use a genome wide set of 14 559 single-nucleotide polymorphisms (SNPs) to identify the likely source population for this recruitment event. Most loci (76%) showed low genetic divergence across the species' range, indicating high levels of gene flow and confirming previous findings using neutral microsatellite markers. However, a small proportion of loci showed strong patterns of differentiation and exhibited patterns of population structure consistent with local adaptation. Clustering analyses based on these outlier loci indicated that recruits at the southern end of C. rubescens' range originated 400 km to the north, at the centre of the species' range, where average temperatures are up to 3 °C warmer. Survival of these recruits may be low because they carry alleles adapted to an environment different to the one they now reside in, but their survival is key to establishing locally adapted populations at and beyond the range edge as water temperatures increase with climate change

    Adaptation of Mycobacterium smegmatis to an industrial scale medium and isolation of the mycobacterial porinMspA

    Get PDF
    The adaptation of the organism to a simple and cost-effective growth medium is mandatory in developing a process for large scale production of the octamericporinMspA, which is isolated from Mycobacterium smegmatis. A fermentation optimization with the minimal nutrients required for growth has been performed. During the fermentation, the iron- and ammonium chloride concentrations in the medium were varied to determine their impact on the observed growth rates and cell mass yields. Common antibiotics to control contamination were eliminated in favor of copper sulfate to reduce costs. MspA has been successfully isolated from the harvested M. smegmatisusing aqueous nOPOE (noctyloligooxyethylene) at 65°C. Because of the extraordinary stability of MspA, it is possible to denature and precipitate virtually all other proteins and contaminants by following this approach. To further purify the product, acetone is used for precipitation. Gel electrophoresis confirmed the presence and purity of MspA. A maximum of 840µg (via Bradford assay) of pure MspA per liter of the optimized simple growth medium has been obtained. This is a 40% increase with respect to the previously reported culture medium for MspA

    Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model

    No full text
    Matthew T Basel1, Sivasai Balivada1, Hongwang Wang2, Tej B Shrestha1, Gwi Moon Seo1, Marla Pyle1, Gayani Abayaweera2, Raj Dani2, Olga B Koper2, Masaaki Tamura1, Viktor Chikan2, Stefan H Bossmann2, Deryl L Troyer11Department of Anatomy and Physiology, College of Veterinary Medicine, 2Department of Chemistry, Kansas State University, Manhattan, KS, USAAbstract: Using magnetic nanoparticles to absorb alternating magnetic field energy as a method of generating localized hyperthermia has been shown to be a potential cancer treatment. This report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/iron oxide nanoparticles were synthesized and loaded into RAW264.7 cells (mouse monocyte/macrophage-like cells), which have been shown to be tumor homing cells. A murine model of disseminated peritoneal pancreatic cancer was then generated by intraperitoneal injection of Pan02 cells. After tumor development, monocyte/macrophage-like cells loaded with iron/iron oxide nanoparticles were injected intraperitoneally and allowed to migrate into the tumor. Three days after injection, mice were exposed to an alternating magnetic field for 20 minutes to cause the cell-delivered nanoparticles to generate heat. This treatment regimen was repeated three times. A survival study demonstrated that this system can significantly increase survival in a murine pancreatic cancer model, with an average post-tumor insertion life expectancy increase of 31%. This system has the potential to become a useful method for specifically and actively delivering nanoparticles for local hyperthermia treatment of cancer.Keywords: cytotherapy, pancreatic cancer, disseminated peritoneal carcinomatosis, targeted magnetic hyperthermia, nanoparticle

    Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotype-phenotype correlations in warburg micro syndrome and Martsolf syndrome

    No full text
    Warburg Micro syndrome and Martsolf syndrome (MS) are heterogeneous autosomal-recessive developmental disorders characterized by brain, eye, and endocrine abnormalities. Causative biallelic germline mutations have been identified in RAB3GAP1, RAB3GAP2, or RAB18, each of which encode proteins involved in membrane trafficking. This report provides an up to date overview of all known disease variants identified in 29 previously published families and 52 new families. One-hundred and forty-four Micro and nine Martsolf families were investigated, identifying mutations in RAB3GAP1 in 41% of cases, mutations in RAB3GAP2 in 7% of cases, and mutations in RAB18 in 5% of cases. These are listed in Leiden Open source Variation Databases, which was created by us for all three genes. Genotype-phenotype correlations for these genes have now established that the clinical phenotypes in Micro syndrome and MS represent a phenotypic continuum related to the nature and severity of the mutations present in the disease genes, with more deleterious mutations causing Micro syndrome and milder mutations causing MS. RAB18 has not yet been linked to the RAB3 pathways, but mutations in all three genes cause an indistinguishable phenotype, making it likely that there is some overlap. There is considerable genetic heterogeneity for these disorders and further gene identification will help delineate these pathways

    In vitro exploration of a myeloid-derived suppressor cell line as vehicle for cancer gene therapy

    No full text
    Recent research indicates that cell-mediated gene therapy can be an interesting method to obtain intratumoral expression of therapeutic proteins. This paper explores the possibility of using transfected myeloid-derived suppressor cells (MDSCs), derived from a murine cell line, as cellular vehicles for transporting plasmid DNA (pDNA) encoding interleukin-12 (IL-12) to tumors. Transfecting these cells via electroporation caused massive cell death. This was not due to electroporation-induced cell damage, but was mainly the result of the intracellular presence of plasmids. In contrast, pDNA transfection using Lipofectamine 2000 (LF2000) did not result in a significant loss of viability. Differences in delivery mechanism may explain the distinctive effects on cell viability. Indeed, electroporation is expected to cause a rapid and massive influx of pDNA resulting in cytosolic pDNA levels that most likely surpass the activation threshold of the intracellular DNA sensors leading to cell death. In contrast, a more sustained intracellular release of the pDNA is expected with LF2000. After lipofection with LF2000, 56% of the MDSCs were transfected and transgene expression lasted for at least 24 h. Moreover, biologically relevant amounts of IL-12 were produced by the MDSCs after lipofection with an IL-12 encoding pDNA. In addition, IL-12 transfection caused a significant upregulation of CD80 and considerably reduced the immunosuppressive capacity of the MDSCs. IL-12-transfected MDSCs were still able to migrate to tumor cells, albeit that lipofection of the MDSCs seemed to slightly decrease their migration capacity

    Refining the phenotype associated with <i>GNB1</i> mutations: Clinical data on 18 newly identified patients and review of the literature

    Get PDF
    De novo germline mutations in GNB1 have been associated with a neurodevelopmental phenotype. To date, 28 patients with variants classified as pathogenic have been reported. We add 18 patients with de novo mutations to this cohort, including a patient with mosaicism for a GNB1 mutation who presented with a milder phenotype. Consistent with previous reports, developmental delay in these patients was moderate to severe, and more than half of the patients were non-ambulatory and nonverbal. The most observed substitution affects the p.Ile80 residue encoded in exon 6, with 28% of patients carrying a variant at this residue. Dystonia and growth delay were observed more frequently in patients carrying variants in this residue, suggesting a potential genotype-phenotype correlation. In the new cohort of 18 patients, 50% of males had genitourinary anomalies and 61% of patients had gastrointestinal anomalies, suggesting a possible association of these findings with variants in GNB1. In addition, cutaneous mastocytosis, reported once before in a patient with a GNB1 variant, was observed in three additional patients, providing further evidence for an association to GNB1. We will review clinical and molecular data of these new cases and all previously reported cases to further define the phenotype and establish possible genotype-phenotype correlations
    corecore