20 research outputs found

    Combination antibiotic therapy for community-acquired pneumonia

    Get PDF
    Community-acquired pneumonia (CAP) is a common and potentially serious illness that is associated with morbidity and mortality. Although medical care has improved during the past decades, it is still potentially lethal. Streptococcus pneumoniae is the most frequent microorganism isolated. Treatment includes mandatory antibiotic therapy and organ support as needed. There are several antibiotic therapy regimens that include β-lactams or macrolides or fluoroquinolones alone or in combination. Combination antibiotic therapy achieves a better outcome compared with monotherapy and it should be given in the following subset of patients with CAP: outpatients with comorbidities and previous antibiotic therapy, nursing home patients with CAP, hospitalized patients with severe CAP, bacteremic pneumococcal CAP, presence of shock, and necessity of mechanical ventilation. Better outcome is associated with combination therapy that includes a macrolide for wide coverage of atypical pneumonia, polymicrobial pneumonia, or resistant Streptococcus pneumoniae. Macrolides have shown different properties other than antimicrobial activity, such as anti-inflammatory properties. Although this evidence comes from observational, most of them retrospective and nonblinded studies, the findings are consistent. Ideally, a prospective, multicenter, randomized trial should be performed to confirm these findings

    CD200 receptor restriction of myeloid cell responses antagonizes antiviral immunity and facilitates cytomegalovirus persistence within mucosal tissue

    Get PDF
    CD200 receptor (CD200R) negatively regulates peripheral and mucosal innate immune responses. Viruses, including herpesviruses, have acquired functional CD200 orthologs, implying that viral exploitation of this pathway is evolutionary advantageous. However, the role that CD200R signaling plays during herpesvirus infection in vivo requires clarification. Utilizing the murine cytomegalovirus (MCMV) model, we demonstrate that CD200R facilitates virus persistence within mucosal tissue. Specifically, MCMV infection of CD200R-deficient mice (CD200R-/-) elicited heightened mucosal virus-specific CD4 T cell responses that restricted virus persistence in the salivary glands. CD200R did not directly inhibit lymphocyte effector function. Instead, CD200R-/- mice exhibited enhanced APC accumulation that in the mucosa was a consequence of elevated cellular proliferation. Although MCMV does not encode an obvious CD200 homolog, productive replication in macrophages induced expression of cellular CD200. CD200 from hematopoietic and non-hematopoietic cells contributed independently to suppression of antiviral control in vivo. These results highlight the CD200-CD200R pathway as an important regulator of antiviral immunity during cytomegalovirus infection that is exploited by MCMV to establish chronicity within mucosal tissue

    Team design communication patterns in e-learning design and development

    Get PDF
    Prescriptive stage models have been found insufficient to describe the dynamic aspects of designing, especially in interdisciplinary e-learning design teams. There is a growing need for a systematic empirical analysis of team design processes that offer deeper and more detailed insights into instructional design (ID) than general models can offer. In this paper we present findings from two case studies of team design meetings involved in the development of fully online courses at two well-established European Distance Universities. We applied an activity-based approach to an extended verbal protocol dataset. This method proved to be adequate to describe the emerging team design process by taking into account both cognitive and social aspects of team activity in this specific context. Our findings provide evidence that design is more than problem solving, mainly because the design process is strongly related to the communication process in a team. Some useful patterns of designing emerge, which shed light on the still implicit nature of ID performed by teams. We conclude by presenting guidelines for team designing in the complex field of e-learning

    Absence of Cross-Presenting Cells in the Salivary Gland and Viral Immune Evasion Confine Cytomegalovirus Immune Control to Effector CD4 T Cells

    Get PDF
    Horizontal transmission of cytomegaloviruses (CMV) occurs via prolonged excretion from mucosal surfaces. We used murine CMV (MCMV) infection to investigate the mechanisms of immune control in secretory organs. CD4 T cells were crucial to cease MCMV replication in the salivary gland (SG) via direct secretion of IFNγ that initiated antiviral signaling on non-hematopoietic cells. In contrast, CD4 T cell helper functions for CD8 T cells or B cells were dispensable. Despite SG-resident MCMV-specific CD8 T cells being able to produce IFNγ, the absence of MHC class I molecules on infected acinar glandular epithelial cells due to viral immune evasion, and the paucity of cross-presenting antigen presenting cells (APCs) prevented their local activation. Thus, local activation of MCMV-specific T cells is confined to the CD4 subset due to exclusive presentation of MCMV-derived antigens by MHC class II molecules on bystander APCs, resulting in IFNγ secretion interfering with viral replication in cells of non-hematopoietic origin
    corecore