564 research outputs found
Assessment of low-dose cisplatin as a model of nausea and emesis in beagle dogs, potential for repeated administration
Cisplatin is a highly emetogenic cancer chemotherapy agent, which is often used to induce nausea and emesis in animal models. The cytotoxic properties of cisplatin also cause adverse events that negatively impact on animal welfare preventing repeated administration of cisplatin. In this study, we assessed whether a low (subclinical) dose of cisplatin could be utilized as a model of nausea and emesis in the dog while decreasing the severity of adverse events to allow repeated administration. The emetic, nausea-like behavior and potential biomarker response to both the clinical dose (70 mg/m2) and low dose (15 mg/m2) of cisplatin was assessed. Plasma creatinine concentrations and granulocyte counts were used to assess adverse effects on the kidneys and bone marrow, respectively. Nausea-like behavior and emesis was induced by both doses of cisplatin, but the latency to onset was greater in the low-dose group. No significant change in plasma creatinine was detected for either dose groups. Granulocytes were significantly reduced compared with baseline (P = 0.000) following the clinical, but not the low-dose cisplatin group. Tolerability of repeated administration was assessed with 4 administrations of an 18 mg/m2 dose cisplatin. Plasma creatinine did not change significantly. Cumulative effects on the granulocytes occurred, they were significantly decreased (P = 0.03) from baseline at 3 weeks following cisplatin for the 4th administration only. Our results suggest that subclinical doses (15 and 18 mg/m2) of cisplatin induce nausea-like behavior and emesis but have reduced adverse effects compared with the clinical dose allowing for repeated administration in crossover studies
Design and feasibility testing of a novel group intervention for young women who binge drink in groups
BackgroundYoung women frequently drink alcohol in groups and binge drinking within these natural drinking groups is common. This study describes the design of a theoretically and empirically based group intervention to reduce binge drinking among young women. It also evaluates their engagement with the intervention and the acceptability of the study methods.MethodsFriendship groups of women aged 18–35 years, who had two or more episodes of binge drinking (>6 UK units on one occasion; 48g of alcohol) in the previous 30 days, were recruited from the community. A face-to-face group intervention, based on the Health Action Process Approach, was delivered over three sessions. Components of the intervention were woven around fun activities, such as making alcohol free cocktails. Women were followed up four months after the intervention was delivered. Results The target of 24 groups (comprising 97 women) was recruited. The common pattern of drinking was infrequent, heavy drinking (mean consumption on the heaviest drinking day was UK 18.1 units). Process evaluation revealed that the intervention was delivered with high fidelity and acceptability of the study methods was high. The women engaged positively with intervention components and made group decisions about cutting down. Twenty two groups set goals to reduce their drinking, and these were translated into action plans. Retention of individuals at follow up was 87%.ConclusionsThis study successfully recruited groups of young women whose patterns of drinking place them at high risk of acute harm. This novel approach to delivering an alcohol intervention has potential to reduce binge drinking among young women. The high levels of engagement with key steps in the behavior change process suggests that the group intervention should be tested in a full randomised controlled trial
IgG antibody responses to Plasmodium falciparum merozoite antigens in Kenyan children have a short half-life
Abstract Background Data suggest that antibody responses to malaria parasites merozoite antigens are generally short-lived and this has implications for serological studies and malaria vaccine designs. However, precise data on the kinetics of these responses is lacking. Methods IgG1 and IgG3 responses to five recombinant Plasmodium falciparum merozoite antigens (MSP-119, MSP-2 type A and B, AMA-1 ectodomain and EBA-175 region II) among Kenyan children were monitored using ELISA for 12 weeks after an acute episode of malaria and their half-lives estimated using an exponential decay model. Results The responses peaked mainly at week 1 and then decayed rapidly to very low levels within 6 weeks. Estimation of the half-lives of 40 IgG1 responses yielded a mean half-life of 9.8 days (95% CI: 7.6 – 12.0) while for 16 IgG3 responses it was 6.1 days (95% CI: 3.7 – 8.4), periods that are shorter than those normally described for the catabolic half-life of these antibody subclasses. Conclusion This study indicates antibodies against merozoite antigens have very short half-lives and this has to be taken into account when designing serological studies and vaccines based on the antigens.</p
Effects of pretreatments of Napier Grass with deionized water, sulfuric acid and sodium hydroxide on pyrolysis oil characteristics
The depletion of fossil fuel reserves has led to
increasing interest in liquid bio-fuel from renewable biomass. Biomass is a complex organic material consisting of
different degrees of cellulose, hemicellulose, lignin,
extractives and minerals. Some of the mineral elements
tend to retard conversions, yield and selectivity during
pyrolysis processing. This study is focused on the extraction of mineral retardants from Napier grass using deionized water, dilute sodium hydroxide and sulfuric acid and subsequent pyrolysis in a fixed bed reactor. The raw biomass was characterized before and after each pretreatment
following standard procedure. Pyrolysis study was conducted
in a fixed bed reactor at 600 o�C, 30 �C/min and 30 mL/min N2 flow. Pyrolysis oil (bio-oil) collected was analyzed using standard analytic techniques. The bio-oil yield and characteristics from each pretreated sample were compared with oil from the non-pretreated sample. Bio-oil
yield from the raw sample was 32.06 wt% compared to
38.71, 33.28 and 29.27 wt% oil yield recorded from the
sample pretreated with sulfuric acid, deionized water and
sodium hydroxide respectively. GC–MS analysis of the oil
samples revealed that the oil from all the pretreated biomass had more value added chemicals and less ketones and
aldehydes. Pretreatment with neutral solvent generated
valuable leachate, showed significant impact on the ash
extraction, pyrolysis oil yield, and its composition and
therefore can be regarded as more appropriate for thermochemical conversion of Napier grass
Cellular Radiosensitivity: How much better do we understand it?
Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies.
Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation
Effective eModule Design for First-Year Medical Student Anatomy Curricula
Introduction: It is critical to evaluate student experience with any newly integrated educational resource. In 2018, a Distal Upper Limb (DUL) Anatomy eModule was developed for first-year medical students at the University of Nebraska Medical Center, who have historically identified the DUL as a region of difficulty. This mixed methods study sought to (1) evaluate learner perception of the eModule relative to other resources, and (2) identify eModule content and features that students found valuable.
Methods: The DUL eModule was made available to first-year medical students in 2019 (n= 132), 2020 (n=131), and 2021 (n=131) as a voluntary, supplemental resource. In 2019-2021, all eModule users were prompted to complete a post-eModule, pre-exam survey. In 2021, users were also asked to complete a post-eModule, post-exam survey. Both surveys included a combination of Likert-type and free-response questions.
Results: In the post-eModule, pre-exam survey, a majority of students from all three years agreed or strongly agreed that the eModule was convenient, preferred compared to a textbook or didactic lecture, and applicable to the gross anatomy lab, though opinions were more split when comparing the eModule to studying from a gross specimen. In the post-eModule, post-exam survey, greater than 75% of students agreed or strongly agreed that the eModule prepared them to answer DUL exam questions, and was a useful adjunct to learning DUL anatomy. In the survey’s free response section, students cited support for the eModule’s cadaveric images, its ability to consolidate/organize information, and its two modes of use, though users reported a need for a figure legend to orient the user, and a desire for a learning evaluation integrated within the eModule.
Discussion: While gross anatomy has historically been taught through in-person dissection, student demand for digital, remote learning resources is certain to grow. The findings of this mixed methods analysis will serve to guide anatomy faculty in developing effective digital resources for future novice anatomists.https://digitalcommons.unmc.edu/emet_posters/1034/thumbnail.jp
What is psychiatry? Co-producing complexity in mental health
What is psychiatry? Such a question is increasingly important to engage with in light of the development of new diagnostic frameworks that have wide-ranging and international clinical and societal implications. I suggest in this reflective essay that ‘psychiatry' is not a singular entity that enjoins consistent forms of critique along familiar axes; rather, it is a heterogeneous assemblage of interacting material and symbolic elements (some of which endure, and some of which are subject to innovation). In underscoring the diversity of psychiatry, I seek to move towards further sociological purchase on what remains a contested and influential set of discourses and practices. This approach foregrounds the relationships between scientific knowledge, biomedical institutions, social action and subjective experience; these articulations co-produce both psychiatry and each other. One corollary of this emphasis on multiplicity and incoherence within psychiatric theory, research and practice, is that critiques which elide this complexity are rendered problematic. Engagements with psychiatry are, I argue, best furthered by recognising its multifaceted nature
A new framework for cortico-striatal plasticity: behavioural theory meets In vitro data at the reinforcement-action interface
Operant learning requires that reinforcement signals interact with action representations at a suitable neural interface. Much evidence suggests that this occurs when phasic dopamine, acting as a reinforcement prediction error, gates plasticity at cortico-striatal synapses, and thereby changes the future likelihood of selecting the action(s) coded by striatal neurons. But this hypothesis faces serious challenges. First, cortico-striatal plasticity is inexplicably complex, depending on spike timing, dopamine level, and dopamine receptor type. Second, there is a credit assignment problem—action selection signals occur long before the consequent dopamine reinforcement signal. Third, the two types of striatal output neuron have apparently opposite effects on action selection. Whether these factors rule out the interface hypothesis and how they interact to produce reinforcement learning is unknown. We present a computational framework that addresses these challenges. We first predict the expected activity changes over an operant task for both types of action-coding striatal neuron, and show they co-operate to promote action selection in learning and compete to promote action suppression in extinction. Separately, we derive a complete model of dopamine and spike-timing dependent cortico-striatal plasticity from in vitro data. We then show this model produces the predicted activity changes necessary for learning and extinction in an operant task, a remarkable convergence of a bottom-up data-driven plasticity model with the top-down behavioural requirements of learning theory. Moreover, we show the complex dependencies of cortico-striatal plasticity are not only sufficient but necessary for learning and extinction. Validating the model, we show it can account for behavioural data describing extinction, renewal, and reacquisition, and replicate in vitro experimental data on cortico-striatal plasticity. By bridging the levels between the single synapse and behaviour, our model shows how striatum acts as the action-reinforcement interface
Balancing repair and tolerance of DNA damage caused by alkylating agents
Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity
- …
