21 research outputs found

    Association analysis of 31 common polymorphisms with type 2 diabetes and its related traits in Indian sib pairs

    Get PDF
    : AIMS/HYPOTHESIS: Evaluation of the association of 31 common single nucleotide polymorphisms (SNPs) with fasting glucose, fasting insulin, HOMA-beta cell function (HOMA-?), HOMA-insulin resistance (HOMA-IR) and type 2 diabetes in the Indian population. METHODS: We genotyped 3,089 sib pairs recruited in the Indian Migration Study from four cities in India (Lucknow, Nagpur, Hyderabad and Bangalore) for 31 SNPs in 24 genes previously associated with type 2 diabetes in European populations. We conducted within-sib-pair analysis for type 2 diabetes and its related quantitative traits. RESULTS: The risk-allele frequencies of all the SNPs were comparable with those reported in western populations. We demonstrated significant associations of CXCR4 (rs932206), CDKAL1 (rs7756992) and TCF7L2 (rs7903146, rs12255372) with fasting glucose, with ? values of 0.007 (p?=?0.05), 0.01 (p?=?0.01), 0.007 (p?=?0.05), 0.01 (p?=?0.003) and 0.08 (p?=?0.01), respectively. Variants in NOTCH2 (rs10923931), TCF-2 (also known as HNF1B) (rs757210), ADAM30 (rs2641348) and CDKN2A/B (rs10811661) significantly predicted fasting insulin, with ? values of -0.06 (p?=?0.04), 0.05 (p?=?0.05), -0.08 (p?=?0.01) and -0.08 (p?=?0.02), respectively. For HOMA-IR, we detected associations with TCF-2, ADAM30 and CDKN2A/B, with ? values of 0.05 (p?=?0.04), -0.07 (p?=?0.03) and -0.08 (p?=?0.02), respectively. We also found significant associations of ADAM30 (??=?-0.05; p?=?0.01) and CDKN2A/B (??=?-0.05; p?=?0.03) with HOMA-?. THADA variant (rs7578597) was associated with type 2 diabetes (OR 1.5; 95% CI 1.04, 2.22; p?=?0.03). CONCLUSIONS/INTERPRETATION: We validated the association of seven established loci with intermediate traits related to type 2 diabetes in an Indian population using a design resistant to population stratification

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology.

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention

    Evaluation of seven common lipid associated loci in a large Indian sib pair study.

    Get PDF
    BACKGROUND: Genome wide association studies (GWAS), mostly in Europeans have identified several common variants as associated with key lipid traits. Replication of these genetic effects in South Asian populations is important since it would suggest wider relevance for these findings. Given the rising prevalence of metabolic disorders and heart disease in the Indian sub-continent, these studies could be of future clinical relevance. METHODS: We studied seven common variants associated with a variety of lipid traits in previous GWASs. The study sample comprised of 3178 sib-pairs recruited as participants for the Indian Migration Study (IMS). Associations with various lipid parameters and quantitative traits were analyzed using the Fulker genetic association model. RESULTS: We replicated five of the 7 main effect associations with p-values ranging from 0.03 to 1.97x10(-7). We identified particularly strong association signals at rs662799 in APOA5 (beta=0.18 s.d, p=1.97 x 10(-7)), rs10503669 in LPL (beta =-0.18 s.d, p=1.0 x 10(-4)) and rs780094 in GCKR (beta=0.11 s.d, p=0.001) loci in relation to triglycerides. In addition, the GCKR variant was also associated with total cholesterol (beta=0.11 s.d, p=3.9x10(-4)). We also replicated the association of rs562338 in APOB (p=0.03) and rs4775041 in LIPC (p=0.007) with LDL-cholesterol and HDL-cholesterol respectively. CONCLUSIONS: We report associations of five loci with various lipid traits with the effect size consistent with the same reported in Europeans. These results indicate an overlap of genetic effects pertaining to lipid traits across the European and Indian populations
    corecore