388 research outputs found

    Pedometer use and self-determined motivation for walking in a cardiac telerehabilitation program: a qualitative study

    Full text link
    BACKGROUND: Exercise-based cardiac rehabilitation reduces morbidity and mortality. Walking is a convenient activity suitable for people with cardiac disease. Pedometers count steps, measure walking activity and motivate people to increase physical activity. In this study, patients participating in cardiac telerehabilitation were provided with a pedometer to support motivation for physical activity with the purpose of exploring pedometer use and self-determined motivation for walking experienced by patients and health professionals during a cardiac telerehabilitation program. METHODS: A qualitative research design consisting of observations, individual interviews and patient documents made the basis for a content analysis. Data was analysed deductively using Self Determination Theory as a frame for analysis and discussion, focusing on the psychological needs of autonomy, competence and relatedness. Twelve cardiac patients, 11 health professionals, 6 physiotherapists and 5 registered nurses were included. RESULTS: The pedometer offered independence from standardised rehabilitation since the pedometer supported tailoring, individualised walking activity based on the patient’s choice. This led to an increased autonomy. The patients felt consciously aware of health benefits of walking, and the pedometer provided feedback on walking activity leading to an increased competence to achieve goals for steps. Finally, the pedometer supported relatedness with others. The health professionals’ surveillance of patients’ steps, made the patients feel observed, yet supported, furthermore, their next of kin appeared to be supportive as walking partners. CONCLUSION: Cardiac patients’ motivation for walking was evident due to pedometer use. Even though not all aspects of motivation were autonomous and self determined, the patients felt motivated for walking. The visible steps and continuous monitoring of own walking activity made it possible for each individual patient to choose their desired kind of activity and perform ongoing adjustments of walking activity. The immediate feedback on step activity and the expectations of health benefits resulted in motivation for walking. Finally, pedometer supported walking made surveillance possible, giving the patients a feeling of being looked after and supported. TRIAL REGISTRATION: Current study is a part of The Teledi@log project

    Cholesterol-Dependent Anaplasma phagocytophilum Exploits the Low-Density Lipoprotein Uptake Pathway

    Get PDF
    In eukaryotes, intracellular cholesterol homeostasis and trafficking are tightly regulated. Certain bacteria, such as Anaplasma phagocytophilum, also require cholesterol; it is unknown, however, how this cholesterol-dependent obligatory intracellular bacterium of granulocytes interacts with the host cell cholesterol regulatory pathway to acquire cholesterol. Here, we report that total host cell cholesterol increased >2-fold during A. phagocytophilum infection in a human promyelocytic leukemia cell line. Cellular free cholesterol was enriched in A. phagocytophilum inclusions as detected by filipin staining. We determined that A. phagocytophilum requires cholesterol derived from low-density lipoprotein (LDL), because its replication was significantly inhibited by depleting the growth medium of cholesterol-containing lipoproteins, by blocking LDL uptake with a monoclonal antibody against LDL receptor (LDLR), or by treating the host cells with inhibitors that block LDL-derived cholesterol egress from late endosomes or lysosomes. However, de novo cholesterol biosynthesis is not required, since inhibition of the biosynthesis pathway did not inhibit A. phagocytophilum infection. The uptake of fluorescence-labeled LDL was enhanced in infected cells, and LDLR expression was up-regulated at both the mRNA and protein levels. A. phagocytophilum infection stabilized LDLR mRNA through the 3′ UTR region, but not through activation of the sterol regulatory element binding proteins. Extracellular signal–regulated kinase (ERK) was up-regulated by A. phagocytophilum infection, and inhibition of its upstream kinase, MEK, by a specific inhibitor or siRNA knockdown, reduced A. phagocytophilum infection. Up-regulation of LDLR mRNA by A. phagocytophilum was also inhibited by the MEK inhibitor; however, it was unclear whether ERK activation is required for LDLR mRNA up-regulation by A. phagocytophilum. These data reveal that A. phagocytophilum exploits the host LDL uptake pathway and LDLR mRNA regulatory system to accumulate cholesterol in inclusions to facilitate its replication

    A qualitative study of older adults' responses to sitting-time questions: do we get the information we want?

    Get PDF
    In the last decade, there has been increasing interest in the health effects of sedentary behavior, which is often assessed using self-report sitting-time questions. The aim of this qualitative study was to document older adults' understanding of sitting-time questions from the International Physical Activity (PA) Questionnaire (IPAQ) and the PA Scale for the Elderly (PASE)

    Search for Dark Matter Annihilation in the Galactic Center with IceCube-79

    Get PDF
    The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, new and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. No neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, \left, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to 41024\simeq 4 \cdot 10^{-24} cm3^3 s1^{-1}, and 2.61023\simeq 2.6 \cdot 10^{-23} cm3^3 s1^{-1} for the νν\nu\overline{\nu} channel, respectively.Comment: 14 pages, 9 figures, Submitted to EPJ-C, added references, extended limit overvie

    Elevated serum matrix metalloproteinase 9 (MMP-9) concentration predicts the presence of colorectal neoplasia in symptomatic patients

    Get PDF
    Early detection of polyps or colorectal carcinoma can reduce colorectal carcinoma-associated deaths. Previous studies have demonstrated raised serum levels of matrix metalloproteinase 9 (sMMP-9) in a range of cancers. The aim of this study was to investigate the role of sMMP-9 levels in identifying colorectal neoplasia. Consenting patients donated a blood sample and were assessed by proforma-led history and physical examination. Samples were analysed for sMMP-9 concentration (enzyme-linked immuno-sorbant assay) and compared to final diagnoses. Logistic regression modelling determined independent factors associated with neoplasia. A total of 365 patients were recruited of whom 300 were analysed, including 46 normal controls. A total of 27 significant adenomas and 63 malignancies were identified. The median sMMP-9 concentration was 443ng ml−1 (IQR: 219–782; mean: 546). Patients with neoplasia had significantly elevated sMMP-9 levels (P<0.001). Logistic regression modelling identified elevated log(sMMP-9) as the most significant predictor of neoplasia (χ2=38.33, P<0.001). Other significant factors were age, sex, smoking history, abdominal pain and weight loss. The model accurately predicted neoplasia in 77.3% of cases. Sensitivity and specificity were 77.9 and 77.1%. sMMP-9 estimation can accurately stratify patient to low- or high-risk cohorts. Serum sampling is a potential means of avoiding unnecessary colonoscopy and reducing patient anxiety, iatrogenic morbidity and mortality, and cost

    Cognitive performance in relapsing remitting multiple sclerosis: A longitudinal study in daily practice using a brief computerized cognitive battery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is need for a cognitive test battery that can be easily used in clinical practice to detect or monitor cognitive performance in patients with multiple sclerosis (MS). In order to conduct, in this patient group, a preliminary investigation of the validity and utility of a brief computerized battery, the Cognitive Drug Research (CDR) battery, we longitudinally assessed cognition in patients with relapsing remitting (RR) MS.</p> <p>Methods</p> <p>Forty-three mildly disabled, clinically active RRMS patients were repeatedly assessed with the Digit Symbol Substitution Test (DSST), Paced Auditory Serial Addition Test (PASAT) and five composite scores derived from the CDR computerized cognitive test system (CDR System): Power of Attention, Continuity of Attention, Quality of Working Memory, Quality of Episodic Memory and Speed of Memory. The Multiple Sclerosis Functional Composite (MSFC) and Expanded Disability Status Scale (EDSS) measured disability.</p> <p>Results</p> <p>The composite scores from the CDR battery generally showed excellent test-retest reliability over the repeated assessments, though was low on occasions for the Quality of Working Memory and Quality of Episodic Memory measures. The CDR measures tended to be highly correlated with other measures of cognition (DSST and PASAT) and were also strongly related to disability (EDSS and MSFC). Baseline scores indicated large impairments to visual information processing speed and attention (DSST, Cohen's d 1.1; Power of Attention d 1.4 [reaction time on tasks of focussed and sustained attention]), and a moderate impairment both to sustained attention (Continuity of Attention d 0.6) and complex information processing speed (Speed of memory d 0.7 [reaction time on tasks of working and episodic Memory]), when compared to normative data derived from healthy volunteers enrolled in a series of separate, prior clinical trials. Working memory (Quality of Working Memory) and episodic memory (Quality of Episodic Memory) were unimpaired.</p> <p>Conclusions</p> <p>Preliminary validation of the CDR System indicated that for most, but not all measures psychometric properties were adequate and the measures were related to disability (EDSS and MSFC) and other measures of cognition.</p

    SNARE Protein Mimicry by an Intracellular Bacterium

    Get PDF
    Many intracellular pathogens rely on host cell membrane compartments for their survival. The strategies they have developed to subvert intracellular trafficking are often unknown, and SNARE proteins, which are essential for membrane fusion, are possible targets. The obligate intracellular bacteria Chlamydia replicate within an intracellular vacuole, termed an inclusion. A large family of bacterial proteins is inserted in the inclusion membrane, and the role of these inclusion proteins is mostly unknown. Here we identify SNARE-like motifs in the inclusion protein IncA, which are conserved among most Chlamydia species. We show that IncA can bind directly to several host SNARE proteins. A subset of SNAREs is specifically recruited to the immediate vicinity of the inclusion membrane, and their accumulation is reduced around inclusions that lack IncA, demonstrating that IncA plays a predominant role in SNARE recruitment. However, interaction with the SNARE machinery is probably not restricted to IncA as at least another inclusion protein shows similarities with SNARE motifs and can interact with SNAREs. We modelled IncA's association with host SNAREs. The analysis of intermolecular contacts showed that the IncA SNARE-like motif can make specific interactions with host SNARE motifs similar to those found in a bona fide SNARE complex. Moreover, point mutations in the central layer of IncA SNARE-like motifs resulted in the loss of binding to host SNAREs. Altogether, our data demonstrate for the first time mimicry of the SNARE motif by a bacterium

    A Therapeutic Antibody against West Nile Virus Neutralizes Infection by Blocking Fusion within Endosomes

    Get PDF
    Defining the precise cellular mechanisms of neutralization by potently inhibitory antibodies is important for understanding how the immune system successfully limits viral infections. We recently described a potently inhibitory monoclonal antibody (MAb E16) against the envelope (E) protein of West Nile virus (WNV) that neutralizes infection even after virus has spread to the central nervous system. Herein, we define its mechanism of inhibition. E16 blocks infection primarily at a post-attachment step as antibody-opsonized WNV enters permissive cells but cannot escape from endocytic compartments. These cellular experiments suggest that E16 blocks the acid-catalyzed fusion step that is required for nucleocapsid entry into the cytoplasm. Indeed, E16 directly inhibits fusion of WNV with liposomes. Additionally, low-pH exposure of E16–WNV complexes in the absence of target membranes did not fully inactivate infectious virus, further suggesting that E16 prevents a structural transition required for fusion. Thus, a strongly neutralizing anti–WNV MAb with therapeutic potential is potently inhibitory because it blocks viral fusion and thereby promotes clearance by delivering virus to the lysosome for destruction

    Eye movements and brain oscillations to symbolic safety signs with different comprehensibility

    Get PDF
    Background: The aim of this study was to investigate eye movements and brain oscillations to symbolic safety signs with different comprehensibility. Methods: Forty-two young adults participated in this study, and ten traffic symbols consisting of easy-to-comprehend and hard-to-comprehend signs were used as stimuli. During the sign comprehension test, real-time eye movements and spontaneous brain activity [electroencephalogram (EEG) data] were simultaneously recorded. Results: The comprehensibility level of symbolic traffic signs significantly affects eye movements and EEG spectral power. The harder to comprehend the sign is, the slower the blink rate, the larger the pupil diameter, and the longer the time to first fixation. Noticeable differences on EEG spectral power between easy-to-comprehend and hard-to-comprehend signs are observed in the prefrontal and visual cortex of the human brain. Conclusions: Sign comprehensibility has significant effects on real-time nonintrusive eye movements and brain oscillations. These findings demonstrate the potential to integrate physiological measures from eye movements and brain oscillations with existing evaluation methods in assessing the comprehensibility of symbolic safety signs.open
    corecore