156 research outputs found

    Transient transfection of serum-free suspension HEK 293 cell culture for efficient production of human rFVIII

    Get PDF
    Abstract\ud \ud \ud \ud Background\ud \ud Hemophilia A is a bleeding disorder caused by deficiency in coagulation factor VIII. Recombinant factor VIII (rFVIII) is an alternative to plasma-derived FVIII for the treatment of hemophilia A. However, commercial manufacturing of rFVIII products is inefficient and costly and is associated to high prices and product shortage, even in economically privileged countries. This situation may be solved by adopting more efficient production methods. Here, we evaluated the potential of transient transfection in producing rFVIII in serum-free suspension HEK 293 cell cultures and investigated the effects of different DNA concentration (0.4, 0.6 and 0.8 μg/106 cells) and repeated transfections done at 34° and 37°C.\ud \ud \ud \ud Results\ud \ud We observed a decrease in cell growth when high DNA concentrations were used, but no significant differences in transfection efficiency and in the biological activity of the rFVIII were noticed. The best condition for rFVIII production was obtained with repeated transfections at 34°C using 0.4 μg DNA/106 cells through which almost 50 IU of active rFVIII was produced six days post-transfection.\ud \ud \ud \ud Conclusion\ud \ud Serum-free suspension transient transfection is thus a viable option for high-yield-rFVIII production. Work is in progress to further optimize the process and validate its scalability.The authors would like to acknowledge FAPESP (2008/51505-7) and FINEP (01.07.0652.00) for financial support

    Evaluation of next-generation sequencing software in mapping and assembly

    Get PDF
    Next-generation high-throughput DNA sequencing technologies have advanced progressively in sequence-based genomic research and novel biological applications with the promise of sequencing DNA at unprecedented speed. These new non-Sanger-based technologies feature several advantages when compared with traditional sequencing methods in terms of higher sequencing speed, lower per run cost and higher accuracy. However, reads from next-generation sequencing (NGS) platforms, such as 454/Roche, ABI/SOLiD and Illumina/Solexa, are usually short, thereby restricting the applications of NGS platforms in genome assembly and annotation. We presented an overview of the challenges that these novel technologies meet and particularly illustrated various bioinformatics attempts on mapping and assembly for problem solving. We then compared the performance of several programs in these two fields, and further provided advices on selecting suitable tools for specific biological applications.published_or_final_versio

    Molecular MRI enables early and sensitive detection of brain metastases.

    Get PDF
    Metastasis to the brain is a leading cause of cancer mortality. The current diagnostic method of gadolinium-enhanced MRI is sensitive only to larger tumors, when therapeutic options are limited. Earlier detection of brain metastases is critical for improved treatment. We have developed a targeted MRI contrast agent based on microparticles of iron oxide that enables imaging of endothelial vascular cell adhesion molecule-1 (VCAM-1). Our objectives here were to determine whether VCAM-1 is up-regulated on vessels associated with brain metastases, and if so, whether VCAM-1-targeted MRI enables early detection of these tumors. Early up-regulation of cerebrovascular VCAM-1 expression was evident on tumor-associated vessels in two separate murine models of brain metastasis. Metastases were detectable in vivo using VCAM-1-targeted MRI 5 d after induction (<1,000 cells). At clinical imaging resolutions, this finding is likely to translate to detection at tumor volumes two to three orders of magnitude smaller (0.3-3 × 10(5) cells) than those volumes detectable clinically (10(7)-10(8) cells). VCAM-1 expression detected by MRI increased significantly (P < 0.0001) with tumor progression, and tumors showed no gadolinium enhancement. Importantly, expression of VCAM-1 was shown in human brain tissue containing both established metastases and micrometastases. Translation of this approach to the clinic could increase therapeutic options and change clinical management in a substantial number of cancer patients

    Novel Primate Model of Serotonin Transporter Genetic Polymorphisms Associated with Gene Expression, Anxiety and Sensitivity to Antidepressants

    Get PDF
    This is the final version of the article. It first appeared from Nature Publishing Group via https://dx.doi.org/10.1038/npp.2016.41Genetic polymorphisms in the repeat upstream region of the serotonin transporter gene (SLC6A4) are associated with individual differences in stress reactivity, vulnerability to affective disorders and response to pharmacotherapy. However, the molecular, neurodevelopmental and psychopharmacological mechanisms underlying the link between SLC6A4 polymorphisms and the emotionally vulnerable phenotype are not fully understood. Thus, using the marmoset monkey Callithrix jacchus we characterize here a new neurobiological model to help to address these questions. We first sequenced the marmoset SLC6A4 promoter and identified a double nucleotide polymorphism (−2053AC/CT) and two single nucleotide polymorphisms (−2022C/T and −1592G/C) within the repeat upstream region. We showed their association with gene expression using in vivo quantitative PCR and with affective behavior using a primate test of anxiety (human intruder test). The low-expressing haplotype (AC/C/G) was linked with high anxiety whilst the high-expressing one (CT/T/C) was associated with an active coping strategy in response to threat. Pharmacological challenge with an acute dose of the selective serotonin reuptake inhibitor (SSRI), citalopram, revealed a genotype-dependent behavioral response. Whilst individuals homozygous for the high anxiety-related haplotype AC/C/G exhibited a dose-dependent, anxiogenic response, individuals homozygous for the low anxiety-related haplotype CT/T/C showed an opposing, dose-dependent anxiolytic effect. These findings provide a novel genetic and behavioral primate model to study the molecular, neurodevelopmental and psychopharmacological mechanisms that underlie genetic variation-associated complex behaviors, with specific implications for the understanding of normal and abnormal serotonin actions and the development of personalized pharmacological treatments for psychiatric disorders.Work was supported by an MRC Programme (ACR; G0901884) and performed within the Behavioural and Clinical Neuroscience Institute, University of Cambridge, funded jointly by the Wellcome Trust and MRC. AMS was supported by a McDonnell Foundation grant (PI’s: E. Phelps, T.W. Robbins; Co-Investigators: ACR and J. LeDoux; 22002015501) and currently supported by MRC; YS supported by the Long Term Student Support Program provided by Osaka University and the Ministry of Education, Culture, Sports, Science and Technology of Japan; HC supported by MRC Career Development Award and ACFS/MI supported by grants from the MRC and Wellcome Trust. GC supported by the Behavioural and Clinical Neuroscience Institute, Cambridge, United Kingdom. EHSS was self-funded

    Excess of serotonin affects neocortical pyramidal neuron migration

    Get PDF
    The serotonin transporter (SERT) is a key molecule involved in the homeostasis of extracellular levels of serotonin and is regulated developmentally. Genetic deletion of SERT in rodents increases extracellular levels of serotonin and affects cellular processes involved in neocortical circuit assembly such as barrel cortex wiring and cortical interneuron migration. Importantly, pharmacological blockade of SERT during brain development leads to phenotypes relevant to psychiatry in rodents and to an increased risk for autism spectrum disorders in humans. Furthermore, developmental adversity interacts with genetically-driven variations of serotonin function in humans and nonhuman primates to increase the risk for a variety of stress-related phenotypes. In this study, we investigate whether an excess of serotonin affects the migration of neocortical pyramidal neurons during development. Using in utero electroporation combined with time-lapse imaging to specifically monitor pyramidal neurons during late mouse embryogenesis, we show that an excess of serotonin reversibly affects the radial migration of pyramidal neurons. We further identify that the serotonin receptor 5-HT6 is expressed in pyramidal neuron progenitors and that 5-HT6 receptor activation replicates the effects of serotonin stimulation. Finally, we show that the positioning of superficial layer pyramidal neurons is altered in vivo in SERT knockout mice. Taken together, these results indicate that a developmental excess of serotonin decreases the migration speed of cortical pyramidal neurons, affecting a fundamental step in the assembly of neural circuits. These findings support the hypothesis that developmental dysregulation of serotonin homeostasis has detrimental effects on neocortical circuit formation and contributes to increased vulnerability to psychiatric disorders

    Assignment of chromosomal locations for unassigned SNPs/scaffolds based on pair-wise linkage disequilibrium estimates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent developments of high-density SNP chips across a number of species require accurate genetic maps. Despite rapid advances in genome sequence assembly and availability of a number of tools for creating genetic maps, the exact genome location for a number of SNPs from these SNP chips still remains unknown. We have developed a locus ordering procedure based on linkage disequilibrium (LODE) which provides estimation of the chromosomal positions of unaligned SNPs and scaffolds. It also provides an alternative means for verification of genetic maps. We exemplified LODE in cattle.</p> <p>Results</p> <p>The utility of the LODE procedure was demonstrated using data from 1,943 bulls genotyped for 73,569 SNPs across three different SNP chips. First, the utility of the procedure was tested by analysing the masked positions of 1,500 randomly-chosen SNPs with known locations (50 from each chromosome), representing three classes of minor allele frequencies (MAF), namely >0.05, 0.01<MAF ≤ 0.05 and 0.001<MAF ≤ 0.01. The efficiency (percentage of masked SNPs that could be assigned a location) was 96.7%, 30.6% and 2.0%; with an accuracy (the percentage of SNPs assigned correctly) of 99.9%, 98.9% and 33.3% in the three classes of MAF, respectively. The average precision for placement of the SNPs was 914, 3,137 and 6,853 kb, respectively. Secondly, 4,688 of 5,314 SNPs unpositioned in the Btau4.0 assembly were positioned using the LODE procedure. Based on these results, the positions of 485 unordered scaffolds were determined. The procedure was also used to validate the genome positions of 53,068 SNPs placed on Btau4.0 bovine assembly, resulting in identification of problem areas in the assembly. Finally, the accuracy of the LODE procedure was independently validated by comparative mapping on the hg18 human assembly.</p> <p>Conclusion</p> <p>The LODE procedure described in this study is an efficient and accurate method for positioning SNPs (MAF>0.05), for validating and checking the quality of a genome assembly, and offers a means for positioning of unordered scaffolds containing SNPs. The LODE procedure will be helpful in refining genome sequence assemblies, especially those being created from next-generation sequencing where high-throughput SNP discovery and genotyping platforms are integrated components of genome analysis.</p

    Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Determination of protein subcellular localization plays an important role in understanding protein function. Knowledge of the subcellular localization is also essential for genome annotation and drug discovery. Supervised machine learning methods for predicting the localization of a protein in a cell rely on the availability of large amounts of labeled data. However, because of the high cost and effort involved in labeling the data, the amount of labeled data is quite small compared to the amount of unlabeled data. Hence, there is a growing interest in developing <it>semi-supervised methods</it> for predicting protein subcellular localization from large amounts of unlabeled data together with small amounts of labeled data.</p> <p>Results</p> <p>In this paper, we present an Abstraction Augmented Markov Model (AAMM) based approach to semi-supervised protein subcellular localization prediction problem. We investigate the effectiveness of AAMMs in exploiting <it>unlabeled</it> data. We compare semi-supervised AAMMs with: (i) Markov models (MMs) (which do not take advantage of unlabeled data); (ii) an expectation maximization (EM); and (iii) a co-training based approaches to semi-supervised training of MMs (that make use of unlabeled data).</p> <p>Conclusions</p> <p>The results of our experiments on three protein subcellular localization data sets show that semi-supervised AAMMs: (i) can effectively exploit unlabeled data; (ii) are more accurate than both the MMs and the EM based semi-supervised MMs; and (iii) are comparable in performance, and in some cases outperform, the co-training based semi-supervised MMs.</p

    Fluoxetine during Development Reverses the Effects of Prenatal Stress on Depressive-Like Behavior and Hippocampal Neurogenesis in Adolescence

    Get PDF
    Depression during pregnancy and the postpartum period is a growing health problem, which affects up to 20% of women. Currently, selective serotonin reuptake inhibitor (SSRIs) medications are commonly used for treatment of maternal depression. Unfortunately, there is very little research on the long-term effect of maternal depression and perinatal SSRI exposure on offspring development. Therefore, the aim of this study was to determine the role of exposure to fluoxetine during development on affective-like behaviors and hippocampal neurogenesis in adolescent offspring in a rodent model of maternal depression. To do this, gestationally stressed and non-stressed Sprague-Dawley rat dams were treated with either fluoxetine (5 mg/kg/day) or vehicle beginning on postnatal day 1 (P1). Adolescent male and female offspring were divided into 4 groups: 1) prenatal stress+fluoxetine exposure, 2) prenatal stress+vehicle, 3) fluoxetine exposure alone, and 4) vehicle alone. Adolescent offspring were assessed for anxiety-like behavior using the Open Field Test and depressive-like behavior using the Forced Swim Test. Brains were analyzed for endogenous markers of hippocampal neurogenesis via immunohistochemistry. Results demonstrate that maternal fluoxetine exposure reverses the reduction in immobility evident in prenatally stressed adolescent offspring. In addition, maternal fluoxetine exposure reverses the decrease in hippocampal cell proliferation and neurogenesis in maternally stressed adolescent offspring. This research provides important evidence on the long-term effect of fluoxetine exposure during development in a model of maternal adversity

    Design, Validation and Annotation of Transcriptome-Wide Oligonucleotide Probes for the Oligochaete Annelid Eisenia fetida

    Get PDF
    High density oligonucleotide probe arrays have increasingly become an important tool in genomics studies. In organisms with incomplete genome sequence, one strategy for oligo probe design is to reduce the number of unique probes that target every non-redundant transcript through bioinformatic analysis and experimental testing. Here we adopted this strategy in making oligo probes for the earthworm Eisenia fetida, a species for which we have sequenced transcriptome-scale expressed sequence tags (ESTs). Our objectives were to identify unique transcripts as targets, to select an optimal and non-redundant oligo probe for each of these target ESTs, and to annotate the selected target sequences. We developed a streamlined and easy-to-follow approach to the design, validation and annotation of species-specific array probes. Four 244K-formatted oligo arrays were designed using eArray and were hybridized to a pooled E. fetida cRNA sample. We identified 63,541 probes with unsaturated signal intensities consistently above the background level. Target transcripts of these probes were annotated using several sequence alignment algorithms. Significant hits were obtained for 37,439 (59%) probed targets. We validated and made publicly available 63.5K oligo probes so the earthworm research community can use them to pursue ecological, toxicological, and other functional genomics questions. Our approach is efficient, cost-effective and robust because it (1) does not require a major genomics core facility; (2) allows new probes to be easily added and old probes modified or eliminated when new sequence information becomes available, (3) is not bioinformatics-intensive upfront but does provide opportunities for more in-depth annotation of biological functions for target genes; and (4) if desired, EST orthologs to the UniGene clusters of a reference genome can be identified and selected in order to improve the target gene specificity of designed probes. This approach is particularly applicable to organisms with a wealth of EST sequences but unfinished genome

    Brain Serotonin Synthesis in Adult Males Characterized by Physical Aggression during Childhood: A 21-Year Longitudinal Study

    Get PDF
    Adults exhibiting severe impulsive and aggressive behaviors have multiple indices of low serotonin (5-HT) neurotransmission. It remains unclear though whether low 5-HT mediates the behavior or instead reflects a pre-existing vulnerability trait.C-AMT bilaterally in the orbitofrontal cortex and self-reported more impulsiveness. Despite this, in adulthood there were no group differences in plasma tryptophan levels, genotyping, aggression, emotional intelligence, working memory, computerized measures of impulsivity, psychosocial functioning/adjustment, and personal and family history of mood and substance abuse disorders.These results force a re-examination of the low 5-HT hypothesis as central in the biology of violence. They suggest that low 5-HT does not mediate current behavior and should be considered a vulnerability factor for impulsive-aggressive behavior that may or may not be expressed depending on other biological factors, experience, and environmental support during development
    corecore