9 research outputs found

    Antioxidant vitamin status (A, E, C, and beta-carotene) in European adolescents-the HELENA study

    No full text

    Seasonal variation in physical activity and sedentary time in different European regions. The HELENA study

    No full text

    Do dietary patterns determine levels of vitamin B6, folate, and vitamin B12 intake and corresponding biomarkers in European adolescents? The Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study

    No full text
    OBJECTIVES: To determine dietary patterns (DPs) and explain the highest variance of vitamin B6, folate, and B12 intake and related concentrations among European adolescents. METHODS: A total of 2173 adolescents who participated in the Healthy Lifestyle in Europe by Nutrition in Adolescence study met the eligibility criteria for the vitamin B intake analysis (46% boys) and 586 adolescents for the biomarkers analysis (47% boys). Two non-consecutive, 24-h, dietary recalls were used to assess the mean intakes. Concentrations were measured by chromatography and immunoassay testing. A reduced rank regression was applied to elucidate the combined effect of food intake of vitamin B and related concentrations. RESULTS: The identified DPs (one per vitamin B intake and biomarker and by sex) explained a variability between 34.2% and 23.7% of the vitamin B intake and between 17.2% and 7% of the biomarkers. In the reduced rank regression models, fish, eggs, cheese, whole milk and buttermilk intakes were loaded positively for vitamin B intake in both sexes; however, soft drinks and chocolate were loaded negatively. For the biomarkers, a higher variability was observed in the patterns in terms of food loads such as alcoholic drinks, sugars, and soft drinks. Some food items were loaded differently between intakes and biomarkers such as fish products, which was loaded positively for intakes but negatively for plasma folate in girls. CONCLUSIONS: The identified DPs explained up to 34.2% and 17.2% of the variability of the vitamin B intake and plasma concentrations, respectively, in European adolescents. Further studies are needed to elucidate the factors that determine such patterns

    Notes for genera – Ascomycota

    No full text
    Knowledge of the relationships and thus the classification of fungi, has developed rapidly with increasingly widespread use of molecular techniques, over the past 10--15 years, and continues to accelerate. Several genera have been found to be polyphyletic, and their generic concepts have subsequently been emended. New names have thus been introduced for species which are phylogenetically distinct from the type species of particular genera. The ending of the separate naming of morphs of the same species in 2011, has also caused changes in fungal generic names. In order to facilitate access to all important changes, it was desirable to compile these in a single document. The present article provides a list of generic names of Ascomycota (approximately 6500 accepted names published to the end of 2016), including those which are lichen-forming. Notes and summaries of the changes since the last edition of `Ainsworth Bisby's Dictionary of the Fungi' in 2008 are provided. The notes include the number of accepted species, classification, type species (with location of the type material), culture availability, life-styles, distribution, and selected publications that have appeared since 2008. This work is intended to provide the foundation for updating the ascomycete component of the ``Without prejudice list of generic names of Fungi'' published in 2013, which will be developed into a list of protected generic names. This will be subjected to the XIXth International Botanical Congress in Shenzhen in July 2017 agreeing to a modification in the rules relating to protected lists, and scrutiny by procedures determined by the Nomenclature Committee for Fungi (NCF). The previously invalidly published generic names Barriopsis, Collophora (as Collophorina), Cryomyces, Dematiopleospora, Heterospora (as Heterosporicola), Lithophila, Palmomyces (as Palmaria) and Saxomyces are validated, as are two previously invalid family names, Bartaliniaceae and Wiesneriomycetaceae. Four species of Lalaria, which were invalidly published are transferred to Taphrina and validated as new combinations. Catenomycopsis Tibell Constant. is reduced under Chaenothecopsis Vain., while Dichomera Cooke is reduced under Botryosphaeria Ces. De Not. (Art. 59)

    Salicylic Acid and Defense Responses in Plants

    No full text
    corecore