160 research outputs found

    Phases of planar 5-dimensional supersymmetric Chern-Simons theory

    Full text link
    In this paper we investigate the large-NN behavior of 5-dimensional N=1\mathcal{N}=1 super Yang-Mills with a level kk Chern-Simons term and an adjoint hypermultiplet. As in three-dimensional Chern-Simons theories, one must choose an integration contour to completely define the theory. Using localization, we reduce the path integral to a matrix model with a cubic action and compute its free energy in various scenarios. In the limit of infinite Yang-Mills coupling and for particular choices of the contours, we find that the free-energy scales as N5/2N^{5/2} for U(N)U(N) gauge groups with large values of the Chern-Simons 't\,Hooft coupling, λ~N/k\tilde\lambda\equiv N/k. If we also set the hypermultiplet mass to zero, then this limit is a superconformal fixed point and the N5/2N^{5/2} behavior parallels other fixed points which have known supergravity duals. We also demonstrate that SU(N)SU(N) gauge groups cannot have this N5/2N^{5/2} scaling for their free-energy. At finite Yang-Mills coupling we establish the existence of a third order phase transition where the theory crosses over from the Yang-Mills phase to the Chern-Simons phase. The phase transition exists for any value of λ~\tilde\lambda, although the details differ between small and large values of λ~\tilde\lambda. For pure Chern-Simons theories we present evidence for a chain of phase transitions as λ~\tilde\lambda is increased. We also find the expectation values for supersymmetric circular Wilson loops in these various scenarios and show that the Chern-Simons term leads to different physical properties for fundamental and anti-fundamental Wilson loops. Different choices of the integration contours also lead to different properties for the loops.Comment: 40 pages, 17 figures, Minor corrections, Published versio

    How simple can a model of an empty viral capsid be? Charge distributions in viral capsids

    Full text link
    We investigate and quantify salient features of the charge distributions on viral capsids. Our analysis combines the experimentally determined capsid geometry with simple models for ionization of amino acids, thus yielding the detailed description of spatial distribution for positive and negative charge across the capsid wall. The obtained data is processed in order to extract the mean radii of distributions, surface charge densities and dipole moment densities. The results are evaluated and examined in light of previously proposed models of capsid charge distributions, which are shown to have to some extent limited value when applied to real viruses.Comment: 10 pages, 10 figures; accepted for publication in Journal of Biological Physic

    A randomized controlled trial of an online, compassion-based intervention for maternal psychological well-being in the first year postpartum

    Get PDF
    Objectives New self-help interventions have been called for to promote psychological well-being amongst mothers in the first year postpartum, with compassion-based interventions having potential in this regard. The present study developed and evaluated a low-intensity, online, compassion-based intervention for this population called Kindness for Mums Online (KFMO). Methods UK mothers of infants under one year (N = 206) participated in a pragmatic randomized controlled trial, comparing KFMO with a waitlist control. Results The effect of the intervention on well-being (the primary outcome) was small and was sensitive to the way missing data were treated. However, KFMO robustly increased self-compassion relative to control, from baseline (week 0) to post-intervention (week 6), and from baseline to follow-up (week 12). No effects were observed on other secondary outcomes. Conclusions The findings suggest that self-compassion can be increased in postpartum mothers via an accessible, low-intensity, web-based, self-help program. However, this did not translate into robust improvements in well-being. Study limitations include relatively high attrition rates and limited generalizability to more diverse samples

    T-folds, doubled geometry, and the SU(2) WZW model

    Full text link
    The SU(2) WZW model at large level N can be interpreted semiclassically as string theory on S^3 with N units of Neveu-Schwarz H-flux. While globally geometric, the model nevertheless exhibits an interesting doubled geometry possessing features in common with nongeometric string theory compactifications, for example, nonzero Q-flux. Therefore, it can serve as a fertile testing ground through which to improve our understanding of more exotic compactifications, in a context in which we have a firm understanding of the background from standard techniques. Three frameworks have been used to systematize the study of nongeometric backgrounds: the T-fold construction, Hitchin's generalized geometry, and fully doubled geometry. All of these double the standard description in some way, in order to geometrize the combined metric and Neveu Schwarz B-field data. We present the T-fold and fully doubled descriptions of WZW models, first for SU(2) and then for general group. Applying the formalism of Hull and Reid-Edwards, we indeed recover the physical metric and H-flux of the WZW model from the doubled description. As additional checks, we reproduce the abelian T-duality group and known semiclassical spectrum of D-branes.Comment: 69 pages; uses amslatex; v4 minor revision

    Symmetry enhancements via 5d instantons, qW-algebrae and (1, 0) superconformal index

    Get PDF
    We explore N=(1,0) superconformal six-dimensional theories arising from M5 branes probing a transverse Ak singularity. Upon circle compactification to 5 dimensions, we describe this system with a dual pq-web of five-branes and propose the spectrum of basic five-dimensional instanton operators driving global symmetry enhancement. For a single M5 brane, we find that the exact partition function of the 5d quiver gauge theory matches the 6d (1, 0) index, which we compute by letter counting. We finally show that S-duality of the pq-web implies new relations among vertex correlators of qW-algebrae

    Macro-level Modeling of the Response of C. elegans Reproduction to Chronic Heat Stress

    Get PDF
    A major goal of systems biology is to understand how organism-level behavior arises from a myriad of molecular interactions. Often this involves complex sets of rules describing interactions among a large number of components. As an alternative, we have developed a simple, macro-level model to describe how chronic temperature stress affects reproduction in C. elegans. Our approach uses fundamental engineering principles, together with a limited set of experimentally derived facts, and provides quantitatively accurate predictions of performance under a range of physiologically relevant conditions. We generated detailed time-resolved experimental data to evaluate the ability of our model to describe the dynamics of C. elegans reproduction. We find considerable heterogeneity in responses of individual animals to heat stress, which can be understood as modulation of a few processes and may represent a strategy for coping with the ever-changing environment. Our experimental results and model provide quantitative insight into the breakdown of a robust biological system under stress and suggest, surprisingly, that the behavior of complex biological systems may be determined by a small number of key components

    Multiple carbon accounting to support just and effective climate policies

    Get PDF
    Negotiating reductions in greenhouse gas emission involves the allocation of emissions and of emission reductions to specific agents, and notably, within the current UN framework, to associated countries. As production takes place in supply chains,increasingly extending over several countries, there are various options available in which emissions originating from one and the same activity may be attributed to different agents along the supply chain and thus to different countries. In this way, several distinct types of national carbon accounts can be constructed. We argue that these accounts will typically differ in the information they provide to individual countries on the effects their actions have on global emissions; and they may also, to varying degrees, prove useful in supporting the pursuit of an effective and just climate policy. None of the accounting systems, however, prove 'best' in achieving these aims under real-world circumstances; we thus suggest compiling reliable data to aid in the consistent calculation of multiple carbon accounts on a global level

    Identification of Novel Genes and Pathways Regulating SREBP Transcriptional Activity

    Get PDF
    BACKGROUND: Lipid metabolism in mammals is orchestrated by a family of transcription factors called sterol regulatory element-binding proteins (SREBPs) that control the expression of genes required for the uptake and synthesis of cholesterol, fatty acids, and triglycerides. SREBPs are thus essential for insulin-induced lipogenesis and for cellular membrane homeostasis and biogenesis. Although multiple players have been identified that control the expression and activation of SREBPs, gaps remain in our understanding of how SREBPs are coordinated with other physiological pathways. METHODOLOGY: To identify novel regulators of SREBPs, we performed a genome-wide cDNA over-expression screen to identify proteins that might modulate the transcription of a luciferase gene driven from an SREBP-specific promoter. The results were verified through secondary biological assays and expression data were analyzed by a novel application of the Gene Set Enrichment Analysis (GSEA) method. CONCLUSIONS/SIGNIFICANCE: We screened 10,000 different cDNAs and identified a number of genes and pathways that have previously not been implicated in SREBP control and cellular cholesterol homeostasis. These findings further our understanding of lipid biology and should lead to new insights into lipid associated disorders

    The effects of Δ9-tetrahydrocannabinol on the dopamine system

    Get PDF
    Δ(9)-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, is a pressing concern to global mental health. Patterns of use are changing drastically due to legalisation, availability of synthetic analogues (‘spice’), cannavaping and aggrandizements in the purported therapeutic effects of cannabis. Many of THC’s reinforcing effects are mediated by the dopamine system. Due to complex cannabinoid-dopamine interactions there is conflicting evidence from human and animal research fields. Acute THC causes increased dopamine release and neuron activity, whilst long-term use is associated with blunting of the dopamine system. Future research must examine the long-term and developmental dopaminergic effects of the drug
    corecore