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1 Introduction and results

The description of systems of multiple M5 branes is still an elusive problem in our current

understanding of M-theory. Nonetheless, many progresses have been obtained recently

in the BPS protected sector by studying M5 brane compactifications on various space-

time backgrounds [1, 2]. In this context, the study of supersymmetric gauge theories via

localization and BPS state counting has revealed to be a very powerful tool [3]. On one hand

this has produced new correspondences among quantum field theories, topological theories

and two-dimensional conformal field theories, as for instance [4]. On the other it has

stimulated the study of higher dimensional supersymmetric gauge theories as deformations

of strongly coupled super-conformal field theories in six dimensions. BPS state counting

in this case has been used to capture informations about the circle compactification of M5

branes in terms of supersymmetric indices [5, 6].

In this paper we address the problem of circle compactification of M5 brane sys-

tems transverse to an ALE orbifold singularity, which encodes indices of six-dimensional

N = (1, 0) superconformal theories. We calculate those indices for a single M5 via letter

counting and show that they coincide with partition functions of suitable five-dimensional

quiver gauge theories. The five-dimensional gauge theories we consider fulfil modular prop-

erties which, after T-dualizing to type IIB, reveal to be encoded in the S-duality properties

of a pq-web five-brane system. These latter are crucial in order to expose the enhance-

ment of global symmetries induced by instanton operators. More precisely, we identify
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N NS5

k D6

Figure 1. N NS5 branes on top of k D6 branes.

a set of basic five-dimensional instanton operators which generates the full tower of non-

perturbative corrections and allows to write the supersymmetric partition functions in a

plethystic exponential form. By going to the S-dual frame we are then able to write these

plethystic formulae in terms of characters of the expected enhanced global symmetries.

The main result we obtain is the comparison of the 6d N = (1, 0) superconformal index

for a tensor multiplet and k2 hypermultiplets, computed in section 3, with the S5 partition

function of a necklace quiver with k abelian nodes (5.17). This generalizes the result of

Lockart and Vafa [5] for k = 1.

One crucial issue in the 5d computation is the presence of spurious terms, associated

to parallel external legs in the pq-web: for a pq-web on a cylinder we show that there

are infinite towers of spurious terms. Once we remove these contributions, the 5d parti-

tion function can be written in terms of G2 special functions [7]. Using the modularity

properties, we build the S5 partition function.

These results have also a nice interpretation in terms of representation theory of q-

deformed infinite-dimensional Lie algebrae. Five-dimensional quiver gauge theories parti-

tion functions can be interpreted as correlators of vertex operators of qW-algebrae. The

pq-web S-duality suggests relations among correlators of different qW-algebrae, which we

check in some examples in section 6.

Note added: while this paper was being finalized, [8] appeared. Their expressions for

the superconformal index of the free (1, 0) supermultiplets agree with ours in section 3.

2 M5 branes on C2/Zk: 6d and 5d gauge theory descriptions

We start from N M5 branes sitting at the tip of the orbifold C2/Zk singularity. This is an

interacting superconformal (1, 0) field theory that we call T 6d
k,AN−1

.

We can gain some knowledge about this class of theories reducing to Type IIA on a

circle inside the C2/Zk: the M5’s become NS5 branes and the orbifold geometry C2/Zk
becomes k D6 branes. So we end up with the following brane setup [9–11]: N NS5 branes

sitting on top of a stack of k D6’s.

If we separate the NS5 branes we go on the nowadays called tensor branch [12], which

gives a Lagrangian IR description of the deformed SCFT. On the tensor branch the field

theory is a linear quiver SU(k)N−1 of the form

k k k · · · · · · k k k . (2.1)

There are also N tensor multiplets parameterizing the positions of the N NS5 branes.

Both from the Type IIA brane setup and from the quiver, it is easy to see the global

– 2 –



J
H
E
P
0
9
(
2
0
1
6
)
0
5
3

symmetry SU(k)2. There is also an additional global U(1) symmetry, that acts on all the

N bifundamentals hypers with charge 1. For N = 1 the theory is free, we will compute its

superconformal index and compare it with 5d partition functions. Notice that it is not the

usual gauge theory orbifold of the (2, 0) free supermultiplet.

Compactification to 5d: S-duality for the rectangular pq-web. Reducing N M5

branes sitting at the tip of the orbifold C2/Zk singularity on a circle transverse to C2/Zk and

along the M5’s, we get N D4 branes sitting at the tip of the orbifold C2/Zk singularity, so

the gauge theory can be understood using the methods of [13]. One alternative description

is given in terms of a pq-web of 5 branes in type IIB: the branes are on a cilinder R× S1,

k D5 branes along R and N NS5 branes along the S1. If this pq-web was on R2 the

gauge theory would have been the SU(N)k−1 linear quiver, while putting the pq-web on

the cilinder the field theory becomes the 5d N = 1 circular quiver SU(N)k gauge theory,

that we call T 5d
k,AN−1

|| N N · · · · · · N N || (2.2)

The pq-web on R2 and 5d S-duality. Let us first analyze the brane setup on R2,

a pq-web of N D5’s intersecting k NS5’s [14, 15]. The gauge theory is a linear quiver

SU(N)k−1 with N flavors at both ends:

N N N · · · · · · N N N . (2.3)

It is also possible to perform a type IIB S-duality on the brane setup, getting the

pq-web of k D5’s intersecting N NS5’s. The gauge theory in this case is the linear quiver

SU(k)N−1 with k flavors at both ends:

k k k · · · · · · k k k . (2.4)

The right way to think about this 5d “duality” is that there is a strongly coupled

5d SCFT corresponding to the completely unresolved pq-web, where all branes are on

top of each other, emanating from a single point and respecting a rescaling symmetry.

This UV SCFT admits relevant deformations that can lead to either IR Lagrangian QFT:

SU(k)N−1 or SU(N)k−1, which are clearly perturbatively different. However, if we are able

to perform computations in the IR QFT’s that can be uplifted to the strongly coupled UV

SCFT, like the partition function on S4 × S1, then the results of the two computations

should agree [16, 17, 19].

Instanton operators and global symmetry. 5d gauge theories contain non pertur-

bative operators I, charged under the topological symmetries whose currents are ∗tr(F 2).

When inserted at a point in space-time, the flux of tr(F 2) on the sphere S4 surrounding

the point measures the instanton charges of the operators [18].

This is analogous to the 3d case, where monopole operators carry a flux for tr(F )

on an S2. In a balanced linear quiver, there is a special set of ‘minimal’ monopole or

instanton operators, see [20] for a recent discussion in the case of 3d N = 2 quivers. Their

topological charges are 0 or 1 and are defined by the property that the non vanishing charges
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are contiguous. For instance for a quiver N N N N N N we can organize the

4 + 3 + 2 + 1 basic instanton states as
I1,0,0,0 I1,1,0,0 I1,1,1,0 I1,1,1,1

I0,1,0,0 I0,1,1,0 I0,1,1,1

I0,0,1,0 I0,0,1,1

I0,0,0,1

 (2.5)

where the superscripts denote the topological charges of the operator I under each

gauge group.

In 3d for N = 4 theories it is known that these non perturbative operators form a

supermultiplet whose primary component has scaling dimension 1. Such supermultiplets

contain conserved currents with scaling dimension 2. For a quiver U(N)k−1, putting to-

gether these k(k− 1)/2 basic monopoles, the correponding k(k− 1)/2 anti-monopoles and

the k − 1 topological U(1) currents, we get the k2 − 1 currents of the enhanced SU(k).

In 5d with N = 1 supersymmetry the story should be similar, but it is not much

discussed in the literature. Symmetry enhancements of this type have been studied in [21],

see also [22–24].

One important feature of these instanton operators is their baryonic charge spectrum:

the instanton operators are charged under the Abelian factors of the global symmetries,

which are usually called baryonic symmetries. The charges can in principle be computed

studying fermionic zero modes around the instanton background. It turns out that a basic

instanton state whose topological charges are 1 from node i to node j is charged precisely

under the symmetry that rotates the ith and the (j + 1)th bifundamentals. This is the

case both in N = 2 3d theories [20, 25] and in N = 1 5d theories. Let us define ith

baryonic symmetry U(1)bar;i to act with charge +1 and −1 on the (i − 1)th and the ith

bifundamental, respectively. Then the basic instantons have baryonic charges equal to N

times the topological charges. So, denoting as in [21],

U(1)i,± ≡
1

2

(
U(1)top; i ±

U(1)bar;i

N

)
(2.6)

the basic instantons are charged under U(1)i,+ and neutral under U(1)i,− . The corre-

sponding anti-instantons are neutral under U(1)i,+ and are charged under U(1)i,−.

Armed with these results we can study the global symmetries that can be inferred

from the low energy Lagrangian description. In the gauge theory SU(N)k−1, each gauge

group U(N) gives a U(1) “topological” or “instantonic” global symmetry, whose current is

∗tr(F 2). Each bifundamental hypermultiplet is charged under a standard U(1) “baryonic”

symmetry. The theory enjoys a U(1)k−1
top ×U(1)kbar×SU(N)2 global symmetry. This global

symmetry is actually enhanced in the UV SCFT. In [21] it is shown how topological and

baryonic symmetries can enhance to a non Abelian group: if we have a IR quiver (or a sub

quiver) where every node is balanced, then the global symmetry of the UV SCFT is the

square of the group whose Dynkin diagram is the quiver in question. A U(N) node with

zero Chern-Simon coupling is balanced if the total number of flavors is precisely 2N . Here
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the quiver has the shape of the Ak−1 = SU(k) Dyinkin diagram so the global symmetry

enhancement in the UV is

U(1)k−1
+ ×U(1)k−1

− → SU(k)+ × SU(k)− (2.7)

Starting from the S-dual gauge theory SU(k)N−1, we can repeat the same arguments.

In both models one concludes that the total global symmetry in the UV is

SU(k)2 × SU(N)2 ×U(1) (2.8)

This is a well known first check of the pq-web S-duality.

pq-web on the cilinder: 6d/5d duality. In the case k = 1, a well known conjec-

ture [26, 27] relates the 5d N = 2 field theory T 5d
1,AN

to the 6d (2, 0) type AN T 6d
1,AN

.

Here we are adding the orbifold C2/Zk, and it is natural to conjecture a relation

between T 5d
k,AN

and T 6d
k,AN

.

Compactifying the pq-web on a circle we are gauging the SU(N) symmetries together,

so the quiver is now the Dynkin diagram of Âk−1, the affine extension of SU(k).

The two SU(N) global symmetries are lost, but we gain one additional topological

U(1) Also, the sum of all baryonic symmetries acts trivially on the theory. The remaining

U(1)ktop ×U(1)k−1
bar symmetry is enhanced to the infinite dimensional group ̂Ak−1×Ak−1, as

argued in [21]. There is also a U(1) symmetry acting on all bifundamentals with charge +1.

For the circular quiver there are k(k − 1) basic instanton operators with the property

that at least one topological charge is zero. We call these ‘non-wrapping’ instantons. There

are k ‘non-wrapping’ instantons of length l, with l = 1, 2, . . . , k−1. However thare are also

‘wrapping’ instantons of the form

I(1,1,...,1) (2.9)

In section 5 we will show explicitly how, for N = 1, wrapping instantons corresponds to

Kaluza-Klein modes, summing all of them reproduces a 6d (1, 0) superconformal index.

3 6d (1, 0) superconformal index

In this section we derive the superconformal indices for the 6d free (1, 0) supermultiplets,

using letter counting.

The 6d (1, 0) and (2, 0) superconformal indices are discussed in [28]. Here we only need

the (1, 0) case: the superconformal algebra is osp(6, 2|2) with R-symmetry Sp(2) ' SU(2).

The supercharges Qiα transform in the (2, 4) of SU(2)R × SO(6).

Picking an appropriate supercharge Q and its conjugate Q†, it is possible to define a

Witten index, with fugacities associated to the symmetries that commute with Q and Q†.

The index reads

I = tr(−1)F qJ12+R
0 qJ34+R

1 qJ56+R
2 . (3.1)

Only states with {Q,Q†} = δ = 0 contribute to the superconformal index, where

δ = ∆− J12 − J34 − J56 − 4R. (3.2)

∆ is the scaling dimension of the states, Ji i+1 are the angular momenta on the three

hortogonal planes in R6, R is the SU(2)R spin.

– 5 –



J
H
E
P
0
9
(
2
0
1
6
)
0
5
3

Letter ∆ J12 J34 J56 R SO(6) irrep δ=∆−
∑
J−4R Index

Φ 2 0 0 0 ±1/2 1 2± 2
√
q0q1q2

ψ 5/2 1/2 1/2 −1/2 0 4 2 0

ψ 5/2 1/2 −1/2 1/2 0 4 2 0

ψ 5/2 −1/2 1/2 1/2 0 4 2 0

ψ 5/2 −1/2 −1/2 −1/2 0 4 4 0

φ 2 0 0 0 0 1 2 0

η 5/2 1/2 1/2 −1/2 ±1/2 4 2± 2 −q0q1

η 5/2 1/2 −1/2 1/2 ±1/2 4 2± 2 −q0q2

η 5/2 −1/2 1/2 1/2 ±1/2 4 2± 2 −q1q2

η 5/2 −1/2 −1/2 −1/2 ±1/2 4 4± 2 0

H+ 3 1 1 1 0 10 0 q0q1q2

H+ 3 −1 1 1 0 10 2 0

H+ 3 1 −1 1 0 10 2 0

H+ 3 1 1 −1 0 10 2 0

H+ 3 ±1 0 0 0 10 3± 1 0

H+ 3 0 ±1 0 0 10 3± 1 0

H+ 3 0 0 ±1 0 10 3± 1 0

∂1,2 1 ±1 0 0 0 6 1± 1 q0

∂3,4 1 0 ±1 0 0 6 1± 1 q1

∂5,6 1 0 0 ±1 0 6 1± 1 q2

Table 1. Single-particle contributions to the index of the (1,0) massless hypermultiplet {Φ, ψ}
and self-dual tensor multiplet {H+, η, φ}. Only the elementary fields (and derivatives) with δ = 0

contribute to the single-particle index.

Let us study explicitly the free superconformal multiplets: hypermultiplet {Φ, ψ} and

self-dual tensor multiplet {H+, η, φ}, whose scaling dimensions and spins are shown in

table 1.

The two free supermultiplets are simple cases in the list of all possible short unitary

representations of the 6d minimal susy superconformal algebra osp(6, 2|2) [29, 30]. The full

classification is given in terms of the SO(6) ' SU(4) Dynkin labels of the superconformal

primary of the entire superconformal multiplet.

In the case of the half hypermultiplet the superconformal primary is the ∆ = 2 complex

scalar Φ, transforming in the 2 of SU(2)R. Acting with the supercharges Qiα, we obtain

a SU(2)R singlet fermion ψ with ∆ = 5/2, transforming in the 4 of SO(6), while the

SU(2)R-triplet is a null state.

In the case of the self-dual tensor multiplet, the superconformal primary is the ∆ = 2

real scalar φ, an SU(2)R-singlet. Acting with the supercharges Qiα, we obtain a SU(2)R-

doublet fermion η with ∆ = 5/2, transforming in the 4 of SO(6). Acting on η there is a

null state (recall that for SO(6), 4⊗ 4 = 6⊕ 10) in the 6 of SO(6) and the self-dual tensor

in the 10 of SO(6).
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Figure 2. 1 D5 and k = 4 NS5 on the plane.

Using table 1, the two indices are computed

I1/2 hyper =

√
q0q1q2

(1− q0)(1− q1)(1− q2)
(3.3)

ISD tensor =
q0q1q2 − q0q1 − q1q2 − q0q2

(1− q0)(1− q1)(1− q2)
(3.4)

In section 5 it will be easy, using these results, to write down the superconformal index

of the (1, 0) SCFT corresponding to 1 M5 brane at the C2/Zk orbifold, that on the tensor

branch is simply k2 free hypers plus 1 self-dual tensor.

4 Exact partition functions: 5d Abelian linear quiver

For N = 1 it is possible to compute the Nekrasov instanton partition [31] function explicitly

to all orders in the instanton fugacities. We review the definition of the Nekrasov partition

function in appendix A. We first consider the simpler case of the linear quiver and we

postpone the discussion on the circular quiver, which is the main result of this paper, to

the next section. Although the 5d Nekrasov partition function of the linear quiver can be

inferred from to the topological string amplitudes computed in [16, 19, 32–34], here we

perform a direct gauge theory calculation.

We need to take the multi-particle partition function generated by the basic instantons

we described in section 2. This is done by using the so called Plethystic Exponential

PE[f ] [35]:

PE[f(t1, t2, . . . , tK)] = exp

[ ∞∑
n=1

f(tn1 , t
n
2 , . . . , t

n
K)

n

]
. (4.1)

For the Abelian linear quiver with k − 1 nodes, there are k(k − 1)/2 basic instantons

with topological charges

I(0,0,...,0,1,1,...,1,0,...,0).

– 7 –
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The formula is thus the PE of a sum of k(k − 1)/2 terms:

ZR4×S1

linear,inst = PE

[∑k−1
i=1

∑k−1
l=0 (

∏i+l
s=i qs)(

∏i+l−1
r=i mr)(1−mi−1)(1−mi+lt1t2)

(1− t1)(1− t2)

]
(4.2)

l = 0, 1, . . . , k − 1 is the length of the basic instantons, i.e. the number of non zero topo-

logical charges.

It is easy to check that this formula correctly reproduces the terms proportional to

one single qi and to qiqi+1 in the Nekrasov partition function. (4.2) can also be checked to

high orders in the instanton fugacities qi with Mathematica against the Nekrasov partition

function. (4.2) must be supplemented by the perturbative contribution of k hypers:

ZR4×S1

linear,pert = PE

[
t1t2

∑k
i=1mi

(1− t1)(1− t2)

]
(4.3)

We get, for ZR4×S1

linear,pert+inst

PE

[
(
∑k

i=1mi)t1t2 +
∑k−1

i,I=1(
∏i+I−1
s=i qsms)(1−mi−1)(m−1

i+I−1 − t1t2)

(1− t1)(1− t2)

]
(4.4)

Each of the k(k−1)/2 instantonic terms decomposes in two positive terms and two negatives

terms, so in the double sum in the numerator we can collect

• k2 positive terms, k(k−1) instanton plus k perturbative terms. We will show shortly

that the positive terms transform like the bifundamental of the enhanced global

symmetries SU(k)× SU(k):

k∑
i=1

mit1t2 +
k−1∑
i,I=1

(
i+I−1∏
s=i

qsms

)
(mi−1t1t2 +m−1

i+I−1) (4.5)

• k(k − 1)/2 negative terms of the form −qimi−1,−qimi−1qi+1mi, . . .. These terms

transform like ‘half’ adjoints (positive roots) of one of the two SU(k) factors.

• k(k−1)/2 negative terms of the form −qimit1t2,−qimiqi+1mi+1t1t2, . . .. These terms

transform like ‘half’ adjoints (positive roots) of the other SU(k) factor.

The latter k(k−1) negative terms, beside being negative, are not invariant under ti → 1/ti,

they must be removed. We call these negative terms spurious. The spurious contributions

come from D1 branes stretching between parallel external NS5’s in the pq-web, that can

slide off to infinity, as was understood in [17, 19, 36–38], see figure 3.

We now want to show that (4.2), after removing the spurious contributions, reproduces

precisely the partition function of k2 free hypers, a expected from S-duality. We construct

the S4 × S1 partition functions multiplying the contribution from the North and South

poles, that are the R4 × S1 Nekrasov partition functions. We analyze the cases k = 1

(which is trivial) and k = 2 first.

– 8 –
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k = 1. In this case we just have the perturbative contribution of a free hyper

ZR4×S1

k=1,full = ZR4×S1

k=1,pert = PE

[
m̃0
√
t1t2

(1− t1)(1− t2)

]
. (4.6)

where m̃0 = m0
√
t1t2. On S4 × S1 we get

ZS4×S1

k=1,full = PE

 m̃0
√
t1t2

(1− t1)(1− t2)
+

m̃−1
0

√
t−1
1 t−1

2

(1− t−1
1 )(1− t−1

2 )

 = PE

[
(m̃0 + m̃−1

0 )
√
t1t2

(1− t1)(1− t2)

]
(4.7)

This is the S4 × S1 5d index of a free hyper with mass m̃0.

k = 2. In this case the linear quiver is 1 1 1 = 1 2

ZR4×S1

k=2,pert+inst = PE

[
(m0 +m1)t1t2 + q(1−m0)(1−m1t1t2)

(1− t1)(1− t2)

]
(4.8)

Where ZR4×S1

k=2,pert+inst = ZR4×S1

k=2,pertZ
R4×S1

k=2,inst. Changing variables to

m0 =
xA

y
√
t1t2

m1 =
yA

x
√
t1t2

q =
xy
√
t1t2
A

(4.9)

with inverse

x =
√
m0q A =

√
m0m1t1t2 y =

√
qm1 (4.10)

we get

ZR4×S1

k=2,pert+inst = PE

[
(xA/y +Ay/x+ xy/A+ xyA)

√
t1t2 − x2 − y2t1t2

(1− t1)(1− t2)

]
(4.11)

On S4 × S1 we get

ZS4×S1

k=2,pert+inst = PE

[
(x+ 1/x)(A+ 1/A)(y + 1/y)

√
t1t2 − (x2 + 1/y2 + (1/x2 + y2)t1t2)

(1− t1)(1− t2)

]
(4.12)

In the 8 positive terms we recognise the trifundamental of SU(2)3, with fugacities x,A, y.

The 4 negative terms are spurious and must be removed. Recall that in the case k = 2

2 2 , with SU(2)2 ×U(1) global symmetry, is actually a trifundamental 2 2

2

. So we

recover the partition function of 4 free hypers, as expected from S-duality.

Removing the spurious negative terms on R4 × S1 amounts to multiply the partition

function by a factor

ZR4×S1

k=2,spurious = PE

[
qm0 + qm1t1t2
(1− t1)(1− t2)

]
. (4.13)
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Generic k. Let us change variables in (4.2) from the k masses mi and k− 1 couplings qi
to xi, yi (i = 1, . . . , k − 1, x0 = y0 = xk = yk = 1) and A:

mi =
xi+1yiA

xiyi+1
√
t1t2

qi =
xiyi
√
t1t2

xi+1yi−1A
(4.14)

which implies

j+I−1∏
s=j

qsms =
yj
yj−1

yj+I−1

yj+I

j+I−1∏
s=j

qsms−1 =
xj
xj−1

xj+I−1

xj+I
(4.15)

The xi and yi will be the chemical potentials of the enhanced SU(k)×SU(k) symmetry, and

A is the chemical potential of the U(1) symmetry. Recalling that our formula for generic

k is

PE

[
(
∑k

i=1mi)t1t2 +
∑k−1

i,I=1(
∏i+I−1
s=i qsms)(1−mi−1)(m−1

i+I−1 − t1t2)

(1− t1)(1− t2)

]
(4.16)

under the above change of variables, the positive terms in the numerator become

k∑
j=1

xj+1yj
xjyj+1

A
√
t1t2 +

k−1∑
j=1

k−j∑
I=1

(
xjyj+I−1

xj−1yj+I
A+

yjxj+I−1

yj−1xj+I
A−1

)√
t1t2 , (4.17)

while the negative terms become

k−1∑
j=1

k−j∑
I=1

j+I−1∏
s=j

qsms(mj−1m
−1
j+I−1 + t1t2) =

k−1∑
j=1

k−j∑
I=1

(
xj
xj−1

xj+I−1

xj+I
+

yj
yj−1

yj+I−1

yj+I
t1t2

)
.

(4.18)

The negative terms are associated to strings stretching between external D5 branes,

so they must be removed. Their flavour fugacities are precisely the ones expected from

the pq-web, and transform like a ‘half-adjoint’ of the two SU(k) groups, while they are not

charged under the U(1).

We are then left with k2 positive terms, k(k+1)/2 terms with A-charge ‘+1’, k(k−1)/2

terms with A-charge ‘−1’.

When we consider the gauge theory on S4 × S1 we need to sum, inside the PE, the

contribution from the North pole and the South pole. The South pole contribution has

all the chemical potentials, and t1, t2, inverted, so we get k2 terms with A-charge ‘+1’, k2

terms with A-charge ‘−1’. The full S4 × S1 partition function Zfull = ZpertZinstZspurious

can be simplified to

ZS4×S1

linear,full = PE

[
((
∑
xi+1/xi)(

∑
yj/yj+1)A+ (

∑
xi/xi+1)(

∑
yj+1/yj)A

−1)
√
t1t2

(1− t1)(1− t2)

]
= PE

[
(χ

SU(k)
fund [xi]χ

SU(k)
antifund[yi]A+ χ

SU(k)
antifund[xi]χ

SU(k)
fund [yi]A

−1)
√
t1t2

(1− t1)(1− t2)

]
(4.19)
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Figure 3. Graphical representation of the k(k − 1) spurious contributions. These are D1 branes

that can slide off to infinity. In the picture k = 3.

where χ
SU(k)
(anti)fund[xi] is the character of the (anti)fundamental representation of SU(k).

Eq. (4.19) is the same partition function of k2 free hypers in the bifundamental k k .

Summarizing, we proved that

Z[1]−(1)k−1−[1](qi,mj) = Z[k]−[k](xi, yj , A) (4.20)

where the two sets of variables are related by

mi =
xi+1yiA

xiyi+1
√
t1t2

qi =
xiyi
√
t1t2

xi+1yi−1A
(4.21)

5 Exact partition functions: 5d Abelian circular quiver

In this section we write down the exact Nekrasov instanton partition function for the abelian

necklace quiver, we study the spurious terms, we construct the S5 partition function and

we compare it with the 6d (1, 0) index.

The topological string partition for this pq-web has been studied in [39, 40].

For the abelian necklace quiver (figures 4 and 5) the partition function (see appendix A)

receives contribution from k(k− 1) non wrapping instantons, but we also need to consider

the wrapping instantons of the form I(1,1,...,1). It turns out that, in order to reproduce

the Nekrasov partition function, we need to sum over a full tower of wrapping instantons

I(n,n,...,n) for all n ≥ 1.1 From the index computation point of view the instanton quantum

1Notice that this aspect looks different from the 3d N = 2 case. In [20] it is shown how in circular quivers

with flavors at each node there is only one wrapping monopole in the chiral ring, with all topological charges

+1. The wrapping monopoles with all charges +n are simply the nth power of the basic one.

– 11 –
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Figure 4. 1 D5 and k NS5 on the cylinder.

number corresponds to the Kaluza-Klein charge on the circle [41]. We are thus led to

propose the following formula:

ZR4×S1

inst = PE

[
Q

1−Q
+

∑k
i,I=1(

∏i+I−1
s=i qsms)(1−mi−1)(m−1

i+I−1 − t1t2)

(1−Q)(1− t1)(1− t2)

]
(5.1)

where Q =
∏k
i=1 qimi is the lenght of the circle the pq-web lives on. We checked this result

to high orders with Mathematica.

There is also the perturbative contribution of the k hypermultiplets

ZR4×S1

pert = PE

[ ∑k
i=1mit1t2

(1− t1)(1− t2)

]
, (5.2)

Let us focus on the numerator inside the PE and split the instanton sum into wrapping

instantons and non wrapping instantons:

(1−Q)

(
k∑
i=1

mit1t2

)
+Q(1− t1)(1− t2) +Q

k∑
i=1

(1−mi)(m
−1
i − t1t2)

+

k∑
i=1

k−1∑
I=1

(
i+I−1∏
s=i

qsms

)
(1−mi−1)(m−1

i+I−1 − t1t2)

Which can be rewritten as

Q(1− t1)(1− t2)− kQt1t2 − kQ+

k∑
i=1

(mit1t2 +m−1
i Q)

+
k∑
i=1

k−1∑
I=1

(
i+I−1∏
s=i

qsms

)
(m−1

i+I−1 +mi−1t1t2 − t1t2 −m−1
i+I−1mi−1)

(5.3)

We see that

ZR4×S1

pert+inst = PE

[
Q(1− t1)(1− t2)− kQt1t2 − kQ+N(qi,mi)

(1−Q)(1− t1)(1− t2)

]
(5.4)
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Figure 5. Circular quiver with k U(1) nodes.

m1

q1 m2

q2

q2

m1q1

m2q2

m1q1Q

m2q2Q

m1q1Q
2

m2q1

m1q2

m2q1Q

m1

q1 m2

q2

q2

Q

Q

Q2

Q2

Q

Q

Figure 6. Spurious contributions on the cylinder. Here we display k = 2. On the left the terms

dependent on qi and mi, associated to non-wrapping instantons, second line of (5.3). On the right

the terms dependent only on Q, associated to wrapping instantons, first line of (5.3).
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with

N(qi,mi) =

k∑
i=1

(mit1t2 +m−1
i Q)

+

k∑
i=1

k−1∑
I=1

(
i+I−1∏
s=i

qsms

)
(m−1

i+I−1 +mi−1t1t2 − t1t2 −m−1
i+I−1mi−1 (5.5)

The formula for N(qi,mi) displays 2k2 positive terms and 2k(k − 1) negative terms.

The 2k2 positive terms transform in the bifundamental representation of SU(k)×SU(k),

except that they are paired as x+Q/x instead of x+1/x. We will see in the next subsection

that the correct character of the bifundamental is reproduced once we build the S5 partition

function, with a proper analytic continuation. Let us underline that this is a non-trivial

check that it is really the S5 partition function which matters for comparison with the M5

brane index.

The 2k(k−1) negative terms are all spurious terms to be factored out (figure 6). Notice

that, beacuse of the factor (1−Q) in the denominator, we are really claiming that there is

an infinite tower of spurious terms. This fact has a natural interpretetation in the pq-web:

for each pair of semi-infinite NS5 branes, we can strech a D1 brane, of length, say, m1q1,

but we can also strech a D1 going around the circle the other way, of length Q/(m1q1).

As shown graphically in figure 6, there are also D1 branes going around the circle more

than once, of length m1q1Q,m1q1Q
2,m1q1Q

3, . . . or Q2/(m1q1), Q3/(m1q1), Q4/(m1q1), . . ..

This explains the 2k(k − 1) towers of spurious states.

The first part of the numerator in (5.4) contains the negative terms −kQt1t2−kQ1−Q . We

interpret these as towers of spurious contributions associated to D1 branes going from one

NS5 to itself and wrapping the circle an integer number of times. See the right part of

figure 6. There are k such contributions, one for every NS5 brane. It looks like these

spurious terms are not independent, so to avoid overcounting we have to add back to the

partition function a term

− Q+Qt1t2
1−Q

+ t1t2 = −Q+ t1t2
1−Q

(5.6)

We also added the t1t2 term, which is just a McMahon function, that is PE[ t1t2
(1−t1)(1−t2) ],

in agreement with [5] for k = 1.

The final result for ZR4×S1

pert+inst+spurious for the k-nodes circular quiver is

PE

[
Q

1−Q
+
−Q− t1t2 +

∑k
i=1(mit1t2 +m−1

i Q) +
∑k

i=1

∑k−1
I=1(

∏i+I−1
s=i qsms)(m

−1
i+I−1 +mi−1t1t2)

(1−Q)(1− t1)(1− t2)

]
(5.7)

5.1 Modularity and partition function on S5

We now patch together three copies of ZR4×S1
to form ZS5

[5, 6, 42–45]. First we rewrite

ZR4×S1
in terms of modular forms G2 [7], where for Im(ωi) > 0

G2(z;ω0, ω1, ω2) = PE

[
−e2πiz − e2πi(−z+ω0+ω1+ω2)

(1− e2πiω0)(1− e2πiω1)(1− e2πiω2)

]
(5.8)
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The exponentiated variables are t1 = e−βε1 , t2 = e−βε2 ,mi = eβµi , qi = eβτi and we defined

Q =
∏k
i=1 qimi = eβ

∑k
i=1(τi+µi) =: eβΩ. It’s non trivial that our result (5.7) for ZR4×S1

full =

ZR4×S1

pert ZR4×S1

inst ZR4×S1

spurious can be written in terms of G2 functions as

ZR4×S1

full =
G′2(0; βΩ

2πi ,
βε1
2πi ,

βε2
2πi )

η( βΩ
2πi)

∏k
i=1

(
G2(β(Ω−µi)

2πi ; βΩ
2πi ,

βε1
2πi ,

βε2
2πi )

∏k−2
l=0 G2(

β(
∑i+l
s=i(τs+µs)−µi+l)

2πi ; βΩ
2πi ,

βε1
2πi ,

βε2
2πi )

)
(5.9)

The partition function on S5 is obtained taking the product of three copies of ZR4×S1

full

ZS5
=

3∏
`=1

ZR4×S1

full (ε
(`)
1 , ε

(`)
2 , β(`), ~q, ~m) (5.10)

These parameters take the following values in the 3 patches of S5 [46]

` ε
(`)
1 ε

(`)
2 β(`)

1 ω2 ω3 2πi/ω1

2 ω3 ω1 2πi/ω2

3 ω1 ω2 2πi/ω3

(5.11)

and the double elliptic gamma functions in the R4 × S1 partition function are of the form

G2(z; βΩ
2πi ,

βε1
2πi ,

βε2
2πi ). They satisfy the modularity property

G2

(
z

ω1

∣∣∣∣ Ω

ω1
,
ω2

ω1
,
ω3

ω1

)
G2

(
z

ω2

∣∣∣∣ Ω

ω2
,
ω3

ω2
,
ω1

ω2

)
G2

(
z

ω3

∣∣∣∣ Ω

ω3
,
ω1

ω3
,
ω2

ω3

)
= e−

πi
12
B4,4(z|ω1,ω2,ω3,Ω)G2

(
z

Ω

∣∣∣∣ω1

Ω
,
ω2

Ω
,
ω3

Ω

)−1 (5.12)

The modular properties of the topological string partition function, in the case of all the

masses equal, have been studied in [40].

Using this equation for every triple of G2’s in the S5 partition function we get2

ZS5
=

∏k
i=1

∏k−1
l=0 G2

(
1
Ω

(∑i+l
s=i(τs + µs)− µi+l

)
| − σ1,−σ2,−σ3

)
η(−σ−1

1 )η(−σ−1
2 )η(−σ−1

3 )G′2(0| − σ1,−σ2,−σ3)
(5.13)

where σi = −ωi/Ω and the convention
∏0
i=1 ≡ 1 is used. Using the modular properties of

the Gr [7]

Gr(−z;−~τ) =
1

Gr(z;~τ)
, η(τ−1) =

√
iτη(−τ) (5.14)

and exponentiated variables qi = e−2πiωi/Ω, q̃s = e−2πiτs/Ω, m̃s = e−2πiµs/Ω we have3

ZS5
=

G′2(0| − σ1,−σ2,−σ3)

η(σ1)η(σ2)η(σ3)
∏k
i=1

∏k−1
l=0 G2

(
− (
∑i+l

s=i τsµs − µi+l)/Ω;σ1, σ2, σ3

) (5.15)

2This is computed up to Bernoulli polynomials and q−1/24: harmless terms which do not play any role

in our analysis.
3G2(0) contains a zero mode that can be regularized replacing it with G′2(0;σ1, σ2, σ3) =

G2(0;σ1, σ2, σ3)PE[1] = PE
[
−q1−q2−q3+q1q2+q1q3+q2q3−2q1q2q3

(1−q1)(1−q2)(1−q3)

]
.
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The variables q̃s, m̃s satisfy
∏k
s=1 q̃sm̃s = e−2πi 1

Ω

∑k
s=1 τs+µs = e−2πi 1

Ω
Ω = 1. Let us now

change variables to x1, x2, . . . , xk−1, y1, y2, . . . , yk−1,A

m̃i =
xiyi−1

xi−1yi

A
√
q1q2q3

t̃i =
xi−1yi−1

xiyi−2

√
q1q2q3

A
(5.16)

and notice that, for Im(σi) > 0, we can rewrite (5.13) as

ZS5
=PE

[
1∏3

i=1(1− qi)

(
q1q2q3 − q1q2 − q1q3 − q2q3

+
√
q1q2q3

[
A

(
k∑
l=1

xl+1

xl

)(
k∑
i=1

yi
yi+1

)
+A−1

(
k∑
l=1

xl
xl+1

)(
k∑
i=1

yi+1

yi

)])]

Using the charachters of the (anti)fundamental of SU(k), χ
SU(k)
(anti)fund[xi], our final result is

ZS5
=PE

[
1∏3

i=1(1− qi)

(
q1q2q3 − q1q2 − q1q3 − q2q3

+
√
q1q2q3

[
χ

SU(k)
fund [xi]χ

SU(k)
antifund[yi]A+ χ

SU(k)
antifund[xi]χ

SU(k)
fund [yi]A

−1
] )]

.

(5.17)

It is easy to recognize the 6d (1, 0) superconformal index of a free self-dual tensor (3.4)

(first line) plus k2 free hypers (3.3) (second line).

6 pq-webs and qW algebrae

Five dimensional gauge theories describing the dynamics of the above pq-webs are expected

to have a relation with representation theory of qW algebrae [47, 48], generalising to five

dimensions [49, 50] the known AGT relation for four-dimensional class S theories [4]. More

recently five dimensional AGT duality has been understand in the study of some infinite

dimensional algebra, known as Ding-Iohara-Miki algebra or elliptic Hall algebra, describ-

ing the integrable properties of the refined topological string and 5d Nekrasov partition

function, for example see [51] and references therein.

The most interesting consequence of this relation relies in the fact the S-duality in

superstring theory, dubbed fiber-base duality in the subclass of topological string ampli-

tudes, predicts a duality between k+ 2-point correlators of qWN algebrae and N + 2-point

correlators of qWk algebrae. Indeed pq-webs on R2 are described by five-dimensional gauge

theories associated to linear quivers of the kind depicted in figure 7. The brane system

on the left-hand side consists in N parallel D4 branes (horizontal black lines) suspended

between k NS5 branes (vertical red lines). As described in section 2, the effective field the-

ory living on the D4 system is a five-dimensional SU(N)k−1 linear quiver with N -flavors

at both ends. The S-dual system on the right of figure 7 corresponds to a linear quiver

SU(k)N−1 with k flavors at both the ends. As depicted in figure 7 one expects the S4×S1

supersymmetric partition function of the first linear quiver to compute the k + 2-point

correlator of qWN algebra on the sphere with k simple punctures corresponding to semi-

degenerate vertex operators of q-Toda, and 2 full N -punctures, corresponding to full vertex
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Figure 7. Linear quiver: a cross is a simple puncture, a cross with a circle is a full puncture.

operators. Analogously, the S4 × S1 partition function of the S-dual theory is expected to

compute the correlator of qWN algebra with N semi-degenerate and two k-full insertions

(figure 7).

A first check of this duality is the matching of the dimensions of the space of parameters

the correlation functions depend on. Indeed, k simple punctures on the sphere count

k positions of the vertex operator insertions and the corresponding k momenta. On the

other hand, the two full N -punctures count each N−1 momenta and one position. Overall,

taking into account PSL(2,C) symmetry, this amounts to 2(N + k) − 3 parameters. The

counting for the dual correlators is obtained by simply swapping k and N .

A more explicit check can be made in the simplest case N = 1 by making use of the

explicit computations of the supersymmetric partition functions displayed in the previous

sections. In this case the left-hand side of the story reduces to q-Heisenberg algebra. A

correspondence between this vertex algebra and five-dimensional gauge theories has been

discussed in [52]. According to the duality stated above, the k + 2-point correlator of q-

Heisenberg vertex operators should capture the three-point correlator of qWk algebra with

two k-full and one semi-degenerate insertion [53–56]. Studies of the non Abelian cases

appeared in [57].

Let us now proceed to the comparison of the two dual correlators.

We saw in section 4 that the partition function for the U(1)k−1 linear quiver theory

has three contributions: perturbative (1-loop), instanton and spurious (due to semi-infinite
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parallel branes). The 1-loop and the instanton part can be written as

ZS4×S1

pert+inst = PE

[
1

(1− t1)(1− t2)

{
− (k − 1)(t1 + t2)−

∑
i<j

[(
xi
xi−1

)(
xj−1

xj

)

+ t1t2

(
xi−1

xi

)(
xj
xj−1

)
+

(
yi−1

yi

)(
yj
yj−1

)
+ t1t2

(
yi
yi−1

)(
yj−1

yj

)]
+
√
t1t2

[
A

(
k∑
l=1

xl
xl−1

)(
k∑
i=1

yi−1

yi

)
+A−1

(
k∑
l=1

xl−1

xl

)(
k∑
i=1

yi
yi−1

)]}]
(6.1)

where we included the 1-loop contribution of the N − 1 vector multiplets that played no

role in the identification of the partition function with the M5 brane SCFT index4

ZS4×S1

pert,vector = PE

[
−1− t1t2

(1− t1)(1− t2)
+ 1

]
= PE

[
−t1 − t2

(1− t1)(1− t2)

]
. (6.2)

By introducing the new variables αi, α̃i,κ defined by

x1 =

k−1∏
i=1

e−
β
k

(αi−αi+1)(i−k)

t1t2
, y1 =

k−1∏
i=1

e+β
k

(α̃i−α̃i+1)(i−k)

t1t2
,

xn = xn1

n−1∏
i=1

e−β(αi−αi+1)(n−i)

t1t2
, yn = yn1

n−1∏
i=1

e+β(α̃i−α̃i+1)(n−i)

t1t2
, n = 2, . . . , k − 1

Ak =
e−βκ

(t1t2)k/2
(6.3)

we can rewrite (6.1) in a form which is more suitable for the comparison with the qWk

correlator

ZS4×S1

pert+inst(α, α̃,κ) =
Υ′q(0)k−1

∏
e>0 Υq(〈Q− α, e〉)Υq(〈Q− α̃, e〉)∏k

i,j=1 Υq(
κ
k + 〈α−Q, hi〉+ 〈α̃−Q, hj〉)

(6.4)

where e are the positive roots of the Ak−1 gauge group, Q = (ε1 +ε2)ρ, ρ is the Weyl vector

(half the sum of all positive roots), hi are the weights of the fundamental representation

and 〈·, ·〉 denotes the scalar product on the root space. The Υq function, with q = e−β can

be defined as follows

Υq(x|ε1, ε2) = (1− q)−
1

ε1ε2
(x−Q2 )

2

PE

[
−qx − q−xt1t2
(1− t1)(1− t2)

]
. (6.5)

For Ak−1 the above can be written in term of k-dimensional vectors ui, whose ith entry is

one and all others zero, as

e = ui − uj , 1 ≤ i < j ≤ k (6.6)

ρ =
1

2

k∑
i=1

(k + 1− 2i)ui, hi = −ui +
1

k

k∑
j=1

uj (6.7)

4The −1 term in the PE is needed to remove a zero mode, for SU(N) gauge group it corresponds to the

Haar measure on the S4 × S1 [58].
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∏
imi

Figure 8. On the left a generalized pq-web which can be obtained from Higgling the TN=4

SCFT [59], the global symmetry is S(U(1) × U(1)) × SU(N) × SU(N) (if N > 2, for N = 2 it

is a standard pq-web with SU(2)3 symmetry). On the right the standard pq-web, one D5 intersect-

ing k NS5’s, the global symmetry is the same, SU(N)×SU(N)×U(1). The symbols ⊗ represent D7

branes. The two pq-webs are related by a sequence of N Hanany-Witten transitions, that, starting

from the right, create the N − 1 D5’s and also bend the upper part of the N NS5’s. The vertical

displacement between the two D7 branes attached to the semi-infinite D5’s does not change, and it

equals the product of all the masses in the linear quiver
∏

imi = Ak. The difference between the

two partition functions is just that the left diagram has one more spurious term, which is precisely

PE[−A−k−Akt1t2
(1−t1)(1−t2)

] = Υq(κ).

A (k − 1)-dimensional vector of fields φ can be expanded on the base of the simple roots

êi of the Ak−1

φ =

k−1∑
i=1

φiêi =

k−1∑
i=1

φi(ui − ui+1). (6.8)

Formula (6.4) can be compared to the three-point correlation function Cq(α, α̃,κhk−1)

with one degenerate insertion (parallel to the highest weight of antifundamental represen-

tation hk−1) of the k-qToda theory with central charge c = k − 1 + 12〈Q,Q〉, that has

been conjectured in [55, 56]. The two formulae are different by a factor Υq(κ) in the

numerator, which is due to the fact that the computation in [55] corresponds to the gener-

alized pq-web [59] diagram on left side of figure 8, while ours corresponds to the standard

pq-web on the right hand side. The two diagrams are related by moving one D7 brane

all the way through the k NS5-branes keeping track of the Hanany-Witten brane creation

effect, see [59–61]. From the viewpoint of the index computation, on which we focus in

this paper, this extra factor is a spurious one due to the contribution of strings stretching

between the two sets of parallel horizontal branes, which are present only in the left-hand

side brane diagram. From the viewpoint of q-deformed CFT, the left-hand side diagram is

more natural and has also the correct four-dimensional limit.

Let us now make some comments on the case of pq-webs on the cylinder. As explained

in section 2 this is described in terms of circular quivers. In this case one expects a relation

with correlators of qW algebrae on a torus. For the case N = 1 it has indeed been shown

in [52] that the one point chiral correlator of q-Heisenberg on the torus computes the k = 1

circular quiver partition function on R4 × S1. The results of section 5 should correspond
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J
H
E
P
0
9
(
2
0
1
6
)
0
5
3

k

N
k
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Figure 9. Circular quiver: a cross is a simple puncture.

to the k-point chiral correlator of the same vertices, see figure 9. It would be interesting

to check this relation explicitly.

7 Open questions

There are some open questions which in our view deserve further investigation. Let us

briefly mention them:

• a natural extension of our work, on which we hope to report soon, is to fully com-

pactify the pq-web brane diagram on the torus. This amounts to compactify the

D6 branes in figure 1 on a circle, and has a link to topological string amplitudes on

elliptically fibered Calabi-Yau’s which are relevant for the classification and study

of N = (1, 0) SCFT [62]. From the viewpoint of the index computation this set-

up would also be useful to analyse the issue of spurious factors due to the strings

stretched between semi-infinite branes, which should appear in the decompactifica-

tion limit. From the viewpoint of deformed W-algebrae, the analysis of the S-duality

of pq-web diagrams on the torus should be useful to investigate elliptic W-algebrae

as considered in [63–65].

• it would be very interesting to analyze the case of non-abelian theories, which would

provide information about interacting M5 brane systems. This implies the integration

over the Coulomb branch parameters and a full control of the polar structure of non-

abelian Nekrasov partition functions in five and six dimensions. We are currently

investigating this problem.

• the study of S-duality of linear and circular pq-webs and its relation with qW-algebrae

has to be further investigated, in order to have an independent proof of the plethystic

formulae for the supersymmetric partition functions derived in this paper as well as

their interpretation in terms of dualities of q-deformed correlators. In particular it is

not clear to us what is the S-dual of the circular quiver displayed in figure 9.

• the interpretation of our results in terms of quantum integrable systems is to be

analysed. In this context, it would be useful to study the insertion of defect operators

in the supersymmetric partition functions and their brane realization.
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A Nekrasov partition function

In this appendix we recall the definition of the Nekrasov partition function [31, 66, 67].

The 1-loop part for the circular U(N) quiver with k nodes is

Z1-loop
U(N)k

({~ai}, {µi}) =
k∏
i=1

z1-loop
vec (~ai)z

1-loop
bif (~ai,~ai+1, µi) (A.1)

where

z1-loop
vec (~a) =

N∏
α,γ=1

∏
m,n>1

sinh
β

2
(aα − aγ +mε1 + nε2)

z1-loop
bif (~a,~b, µ) =

N∏
α,γ=1

∏
m,n>1

sinh
β

2
(aα − bγ − µ+mε1 + nε2)−1.

(A.2)

The instanton partition function for the circular U(N) quiver with k nodes is

ZU(N)K ({~ai}, {qi}, {µi}) =
∑

{~Y1,...~Yk}

k∏
i=1

q
|~Yi|
i zvec(~ai, ~Yi) zbif(~ai,~ai+1, ~Yi, ~Yi+1, µi) (A.3)

where ~ak+1 ≡ ~a1, qk+1 ≡ q1, µk+1 ≡ µ1. And

zvec(~a, ~Y ) =

N∏
α,γ=1

∏
s∈Yα

sinh
β

2

[
aα − aγ − ε1LYγ (s) + ε2 (AYα(s) + 1)

]−1

× sinh
β

2

[
aγ − aα + ε1

(
LYγ (s) + 1

)
− ε2AYα(s)

]−1
(A.4)

zbif(~a,~b, ~Y , ~W, µ) =
N∏

α,γ=1

∏
s∈Yα

sinh
β

2

[
aα − bγ − ε1LWγ (s) + ε2 (AYα(s) + 1)− µ

]
×
∏
t∈Wγ

sinh
β

2

[
aα − bγ + ε1 (LYα(t) + 1)− ε2AWγ (t)− µ

]
(A.5)
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These expressions can be substituted in (A.3) with5

z′vec(~a,
~Y ) =

N∏
α,γ=1

∏
s∈Yα

(
1− e−β(aα−aγ)t

−LYγ (s)

1 t
AYα (s)+1
2

)−1

×
(

1− e−β(aγ−aα)t
LYγ (s)+1

1 t
−AYα (s)
2

)−1

z′bif(~a,
~b, ~Y , ~W,m) =

N∏
α,γ=1

∏
s∈Yα

(
1− e−β(aα−bγ)t

−LWγ (s)

1 t
AYα (s)+1
2 m

)
(A.6)

×
∏
t∈Wγ

(
1− e−β(aα−bγ)t

LYα (t)+1
1 t

−AWγ (t)

2 m
)

redefining qi = qi/
√
mimi+1. The 5D exponentiated variables are t1 = e−βε1 , t2 = e−βε2 ,

mi = eβµi and qi = eβτi .

To consider the instanton contribution of the linear U(N) quiver with k− 1 nodes it is

sufficient to take the limit qk → 0. This correspond to freeze the k-th gauge group, indeed

qk = exp(βτk) where β = 2πiRS1 and τ = 4πi
g2
YM

. So qk ∼ exp(−1/g2
YM)→ 0 when gYM → 0.

We obtain a linear quiver gauge theory with k − 1 U(N) gauge groups, k − 2 massive

bifundamentals and 2k massive flavour at the endpoints of the quiver: k in the fundamental

representation at one endpoint and k in the antifundamental at the other endpoint. This

is because

zbif(~a,~b, ~Y , ~∅, µ) =

N∏
γ=1

zfund(~a, ~Y , µ+ bγ), zbif(~a,~b, ~∅, ~W, µ) =

N∏
γ=1

zantif(~b, ~W, µ− aγ),

(A.7)

where

zfund(~a, ~Y , µ) =

N∏
α=1

∏
(i,j)∈Yα

sinh
β

2
[aα + iε1 + jε2 − µ] = −zantif(~a, ~Y , µ− aα). (A.8)
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