554 research outputs found

    A study of various oxide/silicon interfaces by Ar + backsurface bombardment

    Get PDF
    A low-energy (550 eV) argon beam is used to bombard the backsurfaces of 6 kinds of metal–oxide–semiconductor capacitors, and the resulting effects on their interface characteristics are then investigated. The gate oxide of these capacitors includes thermal oxide, trichloroethyene (TCE) oxide, NH3-nitrided oxide, reoxidized-nitrided oxide, rapid-thermal-nitrided oxide, and N2O-nitrided oxide. Measurements show that for bombardment times up to 45 min the interface-state density of all the devices, in general, decreases with increasing bombardment time/dose, and the midgap energy at the silicon surface tends to rise. Moreover, the bombardment is more effective in reducing acceptor-type than donor-type interface states. On the other hand, the change of fixed-charge density is more complex. For TCE, N2O-nitrided and reoxidized-nitrided oxides, fixed-charge density decreases initially with increasing bombardment time, but then increases, while the trend is reversed for the other gate oxides. A model with stress compensation and weak bond breaking is suggested to explain the results. ©1999 American Institute of Physics.published_or_final_versio

    Effects of chemical composition on humidity sensitivity of Al/BaTiO3/Si structure

    Get PDF
    Argon-ion-beam sputtering technique has been applied to deposit barium titanate (BaTiO3) films on silicon wafers at room temperature under vacuum, and then Al/BaTiO3/Si structures were fabricated. Results show that the current and capacitance of these devices are sensitive to the change of relative humidity at room temperature, and saturation absorption (response) time as well as humidity sensitivity of the devices depend on the chemical composition of the BaTiO3 films. For higher annealing temperature and longer annealing time, the oxygen composition increases while fixed charge density decreases. These changes result in lower humidity sensitivity and longer response time.© 1995 American Institute of Physics.published_or_final_versio

    Controlled synthesis of high-ortho-substitution phenol-formaldehyde resins

    Get PDF
    The relationship between the use of 19 kinds of metal catalysts and the proportion of ortho-ortho links of novolac resins was studied. The proportion of ortho-ortho links of novolac resins was characterized with Fourier transform infrared, H-1-NMR, and C-13-NMR. The effects of different catalysts and different reaction conditions, such as the molar ratio of phenol to formaldehyde, the pH value of the reaction, and the reaction time, were examined. Phenolformaldehyde resins were synthesized with a certain proportion of the ortho position through the adjustment of the reaction conditions. (c) 2005 Wiley Periodicals, Inc

    Circuit dissection of the role of somatostatin in itch and pain

    Get PDF
    Stimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin. We find that in the periphery, somatostatin is exclusively expressed in Nppb+ neurons, and we demonstrate that Nppb+somatostatin+ cells function as pruriceptors. Employing chemogenetics, pharmacology and cell-specific ablation methods, we demonstrate that somatostatin potentiates itch by inhibiting inhibitory dynorphin neurons, which results in disinhibition of GRPR+ neurons. Furthermore, elimination of somatostatin from primary afferents and/or from spinal interneurons demonstrates differential involvement of the peptide released from these sources in itch and pain. Our results define the neural circuit underlying somatostatin-induced itch and characterize a contrasting antinociceptive role for the peptide

    Functional Analysis of Alleged NOGGIN Mutation G92E Disproves Its Pathogenic Relevance

    Get PDF
    We identified an amino acid change (p.G92E) in the Bone Morphogenetic Protein antagonist NOGGIN in a 22-month-old boy who presented with a unilateral brachydactyly type B phenotype. Brachydactyly type B is a skeletal malformation that has been associated with increased Bone Morphogenetic Protein pathway activation in other patients. Previously, the amino acid change p.G92E in NOGGIN was described as causing fibrodysplasia ossificans progressiva, a rare genetic disorder characterized by limb malformations and progressive heterotopic bone formation in soft tissues that, like Brachydactyly type B, is caused by increased activation of Bone Morphogenetic Protein signaling. To determine whether G92E-NOGGIN shows impaired antagonism that could lead to increased Bone Morphogenetic Protein signaling, we performed functional assays to evaluate inhibition of BMP signaling. Interestingly, wt-NOGGIN shows different inhibition efficacies towards various Bone Morphogenetic Proteins that are known to be essential in limb development. However, comparing the biological activity of G92E-NOGGIN with wt-NOGGIN, we observed that G92E-NOGGIN inhibits activation of bone morphogenetic protein signaling with equal efficiency as wt-NOGGIN, supporting that G92E-NOGGIN does not cause pathological effects. Genetic testing of the child's parents revealed the same amino acid change in the healthy father, further supporting that p.G92E is a neutral amino acid substitution in NOGGIN. We conclude that p.G92E represents a rare polymorphism of the NOGGIN gene - causing neither brachydactyly nor fibrodysplasia ossificans progressiva. This study highlights that a given genetic variation should not be considered pathogenic unless supported by functional analyses

    The correlation between radiative surface defect states and high color rendering index from ZnO nanotubes

    Get PDF
    Combined surface, structural and opto-electrical investigations are drawn from the chemically fashioned ZnO nanotubes and its heterostructure with p-GaN film. A strong correlation has been found between the formation of radiative surface defect states in the nanotubes and the pure cool white light possessing averaged eight color rendering index value of 96 with appropriate color temperature. Highly important deep-red color index value has been realized > 95 which has the capability to render and reproduce natural and vivid colors accurately. Diverse types of deep defect states and their relative contribution to the corresponding wavelengths in the broad emission band is suggested

    The correlation between radiative surface defect states and high color rendering index from ZnO nanotubes

    Get PDF
    Combined surface, structural and opto-electrical investigations are drawn from the chemically fashioned ZnO nanotubes and its heterostructure with p-GaN film. A strong correlation has been found between the formation of radiative surface defect states in the nanotubes and the pure cool white light possessing averaged eight color rendering index value of 96 with appropriate color temperature. Highly important deep-red color index value has been realized > 95 which has the capability to render and reproduce natural and vivid colors accurately. Diverse types of deep defect states and their relative contribution to the corresponding wavelengths in the broad emission band is suggested

    Y-Chromosome Evidence for Common Ancestry of Three Chinese Populations with a High Risk of Esophageal Cancer

    Get PDF
    High rates of esophageal cancer (EC) are found in people of the Henan Taihang Mountain, Fujian Minnan, and Chaoshan regions of China. Historical records describe great waves of populations migrating from north-central China (the Henan and Shanxi Hans) through coastal Fujian Province to the Chaoshan plain. Although these regions are geographically distant, we hypothesized that EC high-risk populations in these three areas could share a common ancestry. Accordingly, we used 16 East Asian-specific Y-chromosome biallelic markers (single nucleotide polymorphisms; Y-SNPs) and six Y-chromosome short tandem repeat (Y-STR) loci to infer the origin of the EC high-risk Chaoshan population (CSP) and the genetic relationship between the CSP and the EC high-risk Henan Taihang Mountain population (HTMP) and Fujian population (FJP). The predominant haplogroups in these three populations are O3*, O3e*, and O3e1, with no significant difference between the populations in the frequency of these genotypes. Frequency distribution and principal component analysis revealed that the CSP is closely related to the HTMP and FJP, even though the former is geographically nearer to other populations (Guangfu and Hakka clans). The FJP is between the CSP and HTMP in the principal component plot. The CSP, FJP and HTMP are more closely related to Chinese Hans than to minorities, except Manchu Chinese, and are descendants of Sino-Tibetans, not Baiyues. Correlation analysis, hierarchical clustering analysis, and phylogenetic analysis (neighbor-joining tree) all support close genetic relatedness among the CSP, FJP and HTMP. The network for haplogroup O3 (including O3*, O3e* and O3e1) showed that the HTMP have highest STR haplotype diversity, suggesting that the HTMP may be a progenitor population for the CSP and FJP. These findings support the potentially important role of shared ancestry in understanding more about the genetic susceptibility in EC etiology in high-risk populations and have implications for determining the molecular basis of this disease
    corecore