2,144 research outputs found
Ultrasonic characterization of ultrasound contrast agents
The main constituent of an ultrasound contrast agent (UCA) is gas-filled microbubbles. An average UCA contains billions per ml. These microbubbles are excellent ultrasound scatterers due to their high compressibility. In an ultrasound field they act as resonant systems, resulting in harmonic energy in the backscattered ultrasound signal, such as energy at the subharmonic, ultraharmonic and higher harmonic frequencies. This harmonic energy is exploited for contrast enhanced imaging to discriminate the contrast agent from surrounding tissue. The amount of harmonic energy that the contrast agent bubbles generate depends on the bubble characteristics in combination with the ultrasound field applied. This paper summarizes different strategies to characterize the UCAs. These strategies can be divided into acoustic and optical methods, which focus on the linear or nonlinear responses of the contrast agent bubbles. In addition, the characteristics of individual bubbles can be determined or the bubbles can be examined when they are part of a population. Recently, especially optical methods have proven their value to study individual bubbles. This paper concludes by showing some examples of optically observed typical behavior of contrast bubbles in ultrasound fields
The value of subtraction MRI in detection of amyloid-related imaging abnormalities with oedema or effusion in Alzheimer's patients: An interobserver study
BACKGROUND: Immunotherapeutic treatments targeting amyloid-β plaques in Alzheimer's disease (AD) are associated with the presence of amyloid-related imaging abnormalities with oedema or effusion (ARIA-E), whose detection and classification is crucial to evaluate subjects enrolled in clinical trials. PURPOSE: To investigate the applicability of subtraction MRI in the ARIA-E detection using an established ARIA-E-rating scale. METHODS: We included 75 AD patients receiving bapineuzumab treatment, including 29 ARIA-E cases. Five neuroradiologists rated their brain MRI-scans with and without subtraction images. The accuracy of evaluating the presence of ARIA-E, intraclass correlation coefficient (ICC) and specific agreement was calculated. RESULTS: Subtraction resulted in higher sensitivity (0.966) and lower specificity (0.970) than native images (0.959, 0.991, respectively). Individual rater detection was excellent. ICC scores ranged from excellent to good, except for gyral swelling (moderate). Excellent negative and good positive specific agreement among all ARIA-E imaging features was reported in both groups. Combining sulcal hyperintensity and gyral swelling significantly increased positive agreement for subtraction images. CONCLUSION: Subtraction MRI has potential as a visual aid increasing the sensitivity of ARIA-E assessment. However, in order to improve its usefulness isotropic acquisition and enhanced training are required. The ARIA-E rating scale may benefit from combining sulcal hyperintensity and swelling. KEY POINTS: • Subtraction technique can improve detection amyloid-related imaging-abnormalities with edema/effusion in Alzheimer's patients. • The value of ARIA-E detection, classification and monitoring using subtraction was assessed. • Validation of an established ARIA-E rating scale, recommendations for improvement are reported. • Complementary statistical methods were employed to measure accuracy, inter-rater-reliability and specific agreement
Social support and sense of loneliness in solitary older adults
Older people are vulnerable to loneliness and isolation. Solitary seniors are more likely to suffer the feelings of loneliness with inadequate social networks. Based on a face-to-face questionnaire survey with 151 community-dwelling solitary seniors, the present study examined the associations between social support and the sense of loneliness among solitary older adults in Hong Kong. The results showed that poor mental health status, financial inadequacy and weak social support networks were significantly associated with the sense of loneliness of solitary older adults, with social support being the most prominent risk factor. Frequent contacts with siblings, relatives or friends were found to be important sources of social support to combat loneliness. Policy and service implications are discussed
Shot noise in mesoscopic systems
This is a review of shot noise, the time-dependent fluctuations in the
electrical current due to the discreteness of the electron charge, in small
conductors. The shot-noise power can be smaller than that of a Poisson process
as a result of correlations in the electron transmission imposed by the Pauli
principle. This suppression takes on simple universal values in a symmetric
double-barrier junction (suppression factor 1/2), a disordered metal (factor
1/3), and a chaotic cavity (factor 1/4). Loss of phase coherence has no effect
on this shot-noise suppression, while thermalization of the electrons due to
electron-electron scattering increases the shot noise slightly. Sub-Poissonian
shot noise has been observed experimentally. So far unobserved phenomena
involve the interplay of shot noise with the Aharonov-Bohm effect, Andreev
reflection, and the fractional quantum Hall effect.Comment: 37 pages, Latex, 10 figures (eps). To be published in "Mesoscopic
Electron Transport," edited by L. P. Kouwenhoven, G. Schoen, and L. L. Sohn,
NATO ASI Series E (Kluwer Academic Publishing, Dordrecht
Indomethacin induces apoptosis via a MRP1-dependent mechanism in doxorubicin-resistant small-cell lung cancer cells overexpressing MRP1
Small-cell lung cancers (SCLCs) initially respond to chemotherapy, but are often resistant at recurrence. The non-steroidal anti-inflammatory drug indomethacin is an inhibitor of multidrug resistance protein 1 (MRP1) function. The doxorubicin-resistant MRP1-overexpressing human SCLC cell line GLC4-Adr was highly sensitive for indomethacin compared with the parental doxorubicin-sensitive line GLC4. The purpose of this study was to analyse the relationship between hypersensitivity to indomethacin and MRP1 overexpression. The experimental design involved analysis of the effect of MRP1 downregulation on indomethacin-induced cell survival and apoptosis in GLC4-Adr and GLC4, using siRNA. In addition the effect of indomethacin on glutathione levels and mitochondrial membrane potential was investigated. Small interfering RNAs directed against MRP1 reduced MRP1 mRNA levels twofold and reduced efflux pump function of MRP1, which was reflected by a 1.8-fold higher accumulation of MRP1 substrate carboxyfluorescein, in si-MRP1 versus si-Luciferase-transfected GLC4-Adr cells. Multidrug resistance protein 1 downregulation decreased initial high apoptosis levels 2-fold in GLC4-Adr after indomethacin treatment for 24 h, and increased cell survival (IC50) from 22.8±2.6 to 30.4±5.1 μM following continuous indomethacin exposure. Multidrug resistance protein 1 downregulation had no effect on apoptosis in GLC4 or on glutathione levels in both lines. Although indomethacin (20 μM) for 2 h decreased glutathione levels by 31.5% in GLC4-Adr, complete depletion of cellular glutathione by L-buthionine (S,R)-sulphoximine only resulted in a small increase in indomethacin-induced apoptosis in GLC4-Adr, demonstrating that a reduced cellular glutathione level is not the primary cause of indomethacin-induced apoptosis. Indomethacin exposure decreased mitochondrial membrane potential in GLC4-Adr cells, suggesting activation of the mitochondrial apoptosis pathway. Indomethacin induces apoptosis in a doxorubicin-resistant SCLC cell line through an MRP1-dependent mechanism. This may have implications for the treatment of patients with MRP1-overexpressing tumours
Two new rapid SNP-typing methods for classifying Mycobacterium tuberculosis complex into the main phylogenetic lineages
There is increasing evidence that strain variation in Mycobacterium tuberculosis complex (MTBC) might influence the outcome of tuberculosis infection and disease. To assess genotype-phenotype associations, phylogenetically robust molecular markers and appropriate genotyping tools are required. Most current genotyping methods for MTBC are based on mobile or repetitive DNA elements. Because these elements are prone to convergent evolution, the corresponding genotyping techniques are suboptimal for phylogenetic studies and strain classification. By contrast, single nucleotide polymorphisms (SNP) are ideal markers for classifying MTBC into phylogenetic lineages, as they exhibit very low degrees of homoplasy. In this study, we developed two complementary SNP-based genotyping methods to classify strains into the six main human-associated lineages of MTBC, the 'Beijing' sublineage, and the clade comprising Mycobacterium bovis and Mycobacterium caprae. Phylogenetically informative SNPs were obtained from 22 MTBC whole-genome sequences. The first assay, referred to as MOL-PCR, is a ligation-dependent PCR with signal detection by fluorescent microspheres and a Luminex flow cytometer, which simultaneously interrogates eight SNPs. The second assay is based on six individual TaqMan real-time PCR assays for singleplex SNP-typing. We compared MOL-PCR and TaqMan results in two panels of clinical MTBC isolates. Both methods agreed fully when assigning 36 well-characterized strains into the main phylogenetic lineages. The sensitivity in allele-calling was 98.6% and 98.8% for MOL-PCR and TaqMan, respectively. Typing of an additional panel of 78 unknown clinical isolates revealed 99.2% and 100% sensitivity in allele-calling, respectively, and 100% agreement in lineage assignment between both methods. While MOL-PCR and TaqMan are both highly sensitive and specific, MOL-PCR is ideal for classification of isolates with no previous information, whereas TaqMan is faster for confirmation. Furthermore, both methods are rapid, flexible and comparably inexpensive
Improvement of the liquid-chromatographic analysis of protein tryptic digests by the use of long-capillary monolithic columns with UV and MS detection
Optimisation of peak capacity is an important strategy in gradient liquid chromatography (LC). This can be achieved by using either long columns or columns packed with small particles. Monolithic columns allow the use of long columns at relatively low back-pressure. The gain in peak capacity using long columns was evaluated by the separation of a tryptic bovine serum albumin digest with an LC–UV–mass spectrometry (MS) system and monolithic columns of different length (150 and 750 mm). Peak capacities were determined from UV chromatograms and MS/MS data were used for Mascot database searching. Analyses with a similar gradient slope for the two columns produced ratios of the peak capacities that were close to the expected value of the square root of the column length ratio. Peak capacities of the short column were 12.6 and 25.0 with 3 and 15 min gradients, respectively, and 29.7 and 41.0 for the long column with 15 and 75 min gradients, respectively. Protein identification scores were also higher for the long column, 641 and 750 for the 3- and 15-min gradients with the short column and 1,376 and 993 for the 15- and 75-min gradients with the long column. Thus, the use of long monolithic columns provides improved peptide separation and increased reliability of protein identification
Radiolabeled CCK/gastrin peptides for imaging and therapy of CCK2 receptor-expressing tumors
Cholecystokinin (CCK) receptors are overexpressed in numerous human cancers, like medullary thyroid carcinomas, small cell lung cancers and stromal ovarian cancers. The specific receptor-binding property of the endogenous ligands for these receptors can be exploited by labeling peptides with a radionuclide and using these as carriers to guide the radioactivity to the tissues that express the receptors. In this way, tumors can be visualized using positron emission tomography and single photon emission computed tomography imaging. A variety of radiolabeled CCK/gastrin-related peptides has been synthesized and characterized for imaging. All peptides have the C-terminal CCK receptor-binding tetrapeptide sequence Trp-Met-Asp-Phe-NH2 in common or derivatives thereof. This review focuses on the development and application of radiolabeled CCK/gastrin peptides for radionuclide imaging and radionuclide therapy of tumors expressing CCK receptors. We discuss both preclinical studies as well as clinical studies with CCK and gastrin peptides
Loneliness, social support and cardiovascular reactivity to laboratory stress
Self-reported or explicit loneliness and social support have been inconsistently associated with cardiovascular reactivity (CVR) to stress. The present study aimed to adapt an implicit measure of loneliness, and use it alongside the measures of explicit loneliness and social support, to investigate their correlations with CVR to laboratory stress. Twenty-five female volunteers aged between 18 and 39 years completed self-reported measures of loneliness and social support, and an Implicit Association Test (IAT) of loneliness. The systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) reactivity indices were measured in response to psychosocial stress induced in the laboratory. Functional support indices of social support were significantly correlated with CVR reactivity to stress. Interestingly, implicit, but not explicit, loneliness was significantly correlated with DBP reactivity after one of the stressors. No associations were found between structural support and CVR indices. Results are discussed in terms of validity of implicit versus explicit measures and possible factors that affect physiological outcomes
What Is the Optimal Therapy for Patients with H5N1 Influenza?
Nicholas White discusses optimal dosing of oseltamivir, Robert Webster and Elena Govorkova discuss combination antiviral therapy, and Timothy Uyeki discusses clinical care of patients with H5N1
- …