66 research outputs found

    Tailoring Adjuvant Endocrine Therapy for Postmenopausal Breast Cancer: A CYP2D6 Multiple-Genotype-Based Modeling Analysis and Validation

    Get PDF
    Purpose: Previous studies have suggested that postmenopausal women with breast cancer who present with wild-type CYP2D6 may actually have similar or superior recurrence-free survival outcomes when given tamoxifen in place of aromatase inhibitors (AIs). The present study established a CYP2D6 multiple-genotype-based model to determine the optimal endocrine therapy for patients harboring wild-type CYP2D6. Methods: We created a Markov model to determine whether tamoxifen or AIs maximized 5-year disease-free survival (DFS) for extensive metabolizer (EM) patients using annual hazard ratio (HR) data from the BIG 1-98 trial. We then replicated the model by evaluating 9-year event-free survival (EFS) using HR data from the ATAC trial. In addition, we employed two-way sensitivity analyses to explore the impact of HR of decreased-metabolizer (DM) and its frequency on survival by studying a range of estimates. Results: The 5-year DFS of tamoxifen-treated EM patients was 83.3%, which is similar to that of genotypically unselected patients who received an AI (83.7%). In the validation study, we further demonstrated that the 9-year EFS of tamoxifentreated EM patients was 81.4%, which is higher than that of genotypically unselected patients receiving tamoxifen (78.4%) and similar to that of patients receiving an AI (83.2%). Two-way sensitivity analyses demonstrated the robustness of the results

    Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15 and tamoxifen response in postmenopausal patients with breast cancer

    Get PDF
    INTRODUCTION: Tamoxifen therapy reduces the risk of recurrence and prolongs the survival of oestrogen-receptor-positive patients with breast cancer. Even if most patients benefit from tamoxifen, many breast tumours either fail to respond or become resistant. Because tamoxifen is extensively metabolised by polymorphic enzymes, one proposed mechanism underlying the resistance is altered metabolism. In the present study we investigated the prognostic and/or predictive value of functional polymorphisms in cytochrome P450 3A5 CYP3A5 (*3), CYP2D6 (*4), sulphotransferase 1A1 (SULT1A1; *2) and UDP-glucuronosyltransferase 2B15 (UGT2B15; *2) in tamoxifen-treated patients with breast cancer. METHODS: In all, 677 tamoxifen-treated postmenopausal patients with breast cancer, of whom 238 were randomised to either 2 or 5 years of tamoxifen, were genotyped by using PCR with restriction fragment length polymorphism or PCR with denaturing high-performance liquid chromatography. RESULTS: The prognostic evaluation performed in the total population revealed a significantly better disease-free survival in patients homozygous for CYP2D6*4. For CYP3A5, SULT1A1 and UGT2B15 no prognostic significance was observed. In the randomised group we found that for CYP3A5, homozygous carriers of the *3 allele tended to have an increased risk of recurrence when treated for 2 years with tamoxifen, although this was not statistically significant (hazard ratio (HR) = 2.84, 95% confidence interval (CI) = 0.68 to 11.99, P = 0.15). In the group randomised to 5 years' tamoxifen the survival pattern shifted towards a significantly improved recurrence-free survival (RFS) among CYP3A5*3-homozygous patients (HR = 0.20, 95% CI = 0.07 to 0.55, P = 0.002). No reliable differences could be seen between treatment duration and the genotypes of CYP2D6, SULT1A1 or UGT2B15. The significantly improved RFS with prolonged tamoxifen treatment in CYP3A5*3 homozygotes was also seen in a multivariate Cox model (HR = 0.13, CI = 0.02 to 0.86, P = 0.03), whereas no differences could be seen for CYP2D6, SULT1A1 and UGT2B15. CONCLUSION: The metabolism of tamoxifen is complex and the mechanisms responsible for the resistance are unlikely to be explained by a single polymorphism; instead it is a combination of several mechanisms. However, the present data suggest that genetic variation in CYP3A5 may predict response to tamoxifen therapy

    Drug metabolizing enzyme activities versus genetic variances for drug of clinical pharmacogenomic relevance

    Get PDF
    Enzymes are critically important in the transportation, metabolism, and clearance of most therapeutic drugs used in clinical practice today. Many of these enzymes have significant genetic polymorphisms that affect the enzyme's rate kinetics. Regarding drug metabolism, specific polymorphisms to the cytochrome (CYP) P450 enzyme family are linked to phenotypes that describe reaction rates as "ultra", "intermediate", and "poor," as referenced to "extensive" metabolizers that are assigned to wildtype individuals. Activity scores is an alternate designation that provides more genotype-to-phenotype resolution. Understanding the relative change in enzyme activities or rate of clearance of specific drugs relative to an individual's genotypes is an important component in the interpretation of pharmacogenomic data for personalized medicine. Currently, the most relevant drug metabolizing enzymes are CYP 2D6, CYP 2C9, CYP 2C19, thiopurine methyltransferase (TPMT) and UDP-glucuronosyltransferase (UGT). Each of these enzymes is reactive to a host of different drug substrates. Pharmacogenomic tests that are in routine clinical practice include CYP 2C19 for clopidogrel, TPMT for thiopurine drugs, and UDP-1A1 for irinotecan. Other tests where there is considerable data but have not been widely implemented includes CYP 2C9 for warfarin, CYP 2D6 for tamoxifen and codeine, and CYP 2C19 for the proton pump inhibitors

    Associations between tamoxifen, estrogens, and FSH serum levels during steady state tamoxifen treatment of postmenopausal women with breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cytochrome P450 (CYP) enzymes 2C19, 2D6, and 3A5 are responsible for converting the selective estrogen receptor modulator (SERM), tamoxifen to its active metabolites 4-hydroxy-tamoxifen (4OHtam) and 4-hydroxy-<it>N</it>-demethyltamoxifen (4OHNDtam, endoxifen). Inter-individual variations of the activity of these enzymes due to polymorphisms may be predictors of outcome of breast cancer patients during tamoxifen treatment. Since tamoxifen and estrogens are both partly metabolized by these enzymes we hypothesize that a correlation between serum tamoxifen and estrogen levels exists, which in turn may interact with tamoxifen on treatment outcome. Here we examined relationships between the serum levels of tamoxifen, estrogens, follicle-stimulating hormone (FSH), and also determined the genotypes of CYP2C19, 2D6, 3A5, and SULT1A1 in 90 postmenopausal breast cancer patients.</p> <p>Methods</p> <p>Tamoxifen and its metabolites were measured by liquid chromatography-tandem mass spectrometry. Estrogen and FSH levels were determined using a sensitive radio- and chemiluminescent immunoassay, respectively.</p> <p>Results</p> <p>We observed significant correlations between the serum concentrations of tamoxifen, <it>N</it>-dedimethyltamoxifen, and tamoxifen-<it>N</it>-oxide and estrogens (p < 0.05). The genotype predicted CYP2C19 activity influenced the levels of both tamoxifen metabolites and E1.</p> <p>Conclusions</p> <p>We have shown an association between tamoxifen and its metabolites and estrogen serum levels. An impact of CYP2C19 predicted activity on tamoxifen, as well as estrogen kinetics may partly explain the observed association between tamoxifen and its metabolites and estrogen serum levels. Since the role of estrogen levels during tamoxifen therapy is still a matter of debate further prospective studies to examine the effect of tamoxifen and estrogen kinetics on treatment outcome are warranted.</p
    corecore