41 research outputs found

    Spermidine Promotes Human Hair Growth and Is a Novel Modulator of Human Epithelial Stem Cell Functions

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Active Wnt signaling in response to cardiac injury

    Get PDF
    Although the contribution of Wnt signaling in infarct healing is suggested, its exact role after myocardial infarction (MI) still needs to be unraveled. We evaluated the cardiac presence of active Wnt signaling in vivo following MI, and investigated in which cell types active Wnt signaling was present by determining Axin2 promoter-driven LacZ expression. C57BL/6 Axin2-LacZ reporter mice were sacrificed at days 0, 1, 3, 7, 14, and 21 after LAD ligation. Hearts were snap-frozen for immunohistochemistry (IHC) or enzymatically digested to obtain a single cell suspension for flow cytometric analysis. For both FACS and IHC, samples were stained for β-galactosidase and antibodies against Sca-1, CD31, ckit, and CD45. Active Wnt signaling increased markedly in the myocardium, from 7 days post-MI onwards. Using Sca-1 and CD31, to identify progenitor and endothelial cells, a significant increase in LacZ+ cells was found at 7 and 14 days post-MI. LacZ+ cells also increased in the ckit+ and CD45+ cell population. IHC revealed LacZ+ cells co-expressing Sca, CD31, CD45, vWF, and αSMA in the border zone and the infarcted area. Wnt signaling increased significantly after MI in Sca+- and CD31+-expressing cells, suggesting involvement of Wnt signaling in resident Sca+ progenitor cells, as well as endothelial cells. Moreover, active Wnt signaling was present in ckit+ cells, leukocytes, and fibroblast. Given its broad role during the healing phase after cardiac injury, additional research seems warranted before a therapeutic approach on Wnt to enhance cardiac regeneration can be carried out safely

    A Novel Xenogeneic Co-Culture System to Examine Neuronal Differentiation Capability of Various Adult Human Stem Cells

    Get PDF
    Background: Targeted differentiation of stem cells is mainly achieved by the sequential administration of defined growth factors and cytokines, although these approaches are quite artificial, cost-intensive and time-consuming. We now present a simple xenogeneic rat brain co-culture system which supports neuronal differentiation of adult human stem cells under more in vivo-like conditions. Methods and Findings: This system was applied to well-characterized stem cell populations isolated from human skin, parotid gland and pancreas. In addition to general multi-lineage differentiation potential, these cells tend to differentiate spontaneously into neuronal cell types in vitro and are thus ideal candidates for the introduced co-culture system. Consequently, after two days of co-culture up to 12% of the cells showed neuronal morphology and expressed corresponding markers on the mRNA and protein level. Additionally, growth factors with the ability to induce neuronal different iation in stem cells could be found in the media supernatants of the co-cultures. Conclusions: The co-culture system described here is suitable for testing neuronal differentiation capability of numerous types of stem cells. Especially in the case of human cells, it may be of clinical relevance for future cell-based therapeutic applications

    First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole

    Get PDF
    When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 ± 3 μas, which is circular and encompasses a central depression in brightness with a flux ratio 10:1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and width remaining stable over four different observations carried out in different days. Overall, the observed image is consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic magnetohydrodynamic simulations of black holes and derive a central mass of M = (6.5 ± 0.7) × 109 Me. Our radiowave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme limit and on a mass scale that was so far not accessible

    First M87 Event Horizon Telescope Results. II. Array and Instrumentation

    Get PDF
    The Event Horizon Telescope (EHT) is a very long baseline interferometry (VLBI) array that comprises millimeter- and submillimeter-wavelength telescopes separated by distances comparable to the diameter of the Earth. At a nominal operating wavelength of ~1.3 mm, EHT angular resolution (λ/D) is ~25 μas, which is sufficient to resolve nearby supermassive black hole candidates on spatial and temporal scales that correspond to their event horizons. With this capability, the EHT scientific goals are to probe general relativistic effects in the strong-field regime and to study accretion and relativistic jet formation near the black hole boundary. In this Letter we describe the system design of the EHT, detail the technology and instrumentation that enable observations, and provide measures of its performance. Meeting the EHT science objectives has required several key developments that have facilitated the robust extension of the VLBI technique to EHT observing wavelengths and the production of instrumentation that can be deployed on a heterogeneous array of existing telescopes and facilities. To meet sensitivity requirements, high-bandwidth digital systems were developed that process data at rates of 64 gigabit s−1, exceeding those of currently operating cm-wavelength VLBI arrays by more than an order of magnitude. Associated improvements include the development of phasing systems at array facilities, new receiver installation at several sites, and the deployment of hydrogen maser frequency standards to ensure coherent data capture across the array. These efforts led to the coordination and execution of the first Global EHT observations in 2017 April, and to event-horizon-scale imaging of the supermassive black hole candidate in M87

    CD44v7 ligation downregulates the inflammatory immune response in Crohn's disease patients by apoptosis induction in mononuclear cells from the lamina propria

    No full text
    Deletion of exon CD44v7 abrogates experimental colitis by apoptosis induction in intestinal mononuclear cells. Here we show that CD44v7 expression was upregulated upon CD40 ligation in human mononuclear cells, and examined whether ligation of CD44v7 also affects activation and apoptosis in lamina propria mononuclear cells (LPMC) from Crohn's disease (CD) patients. Thirty five patients with chronic inflammatory bowel disease (IBD), fourteen controls and four patients with diverticulitis were evaluated. CD44v7 was upregulated predominantly in the inflamed mucosa of CD patients. Furthermore, incubation with an anti-CD44v7 antibody induced apoptosis in LPMC isolated from inflamed mucosa of CD patients, but not from non-inflamed mucosa, from patients with ulcerative colitis (UC) or from normal controls. CD40 ligation and simultaneous incubation with anti-CD44v7 significantly downregulated CD80 in dendritic cells, thus inhibiting a critical second signal for naive T-cell activation. The apoptotic signal was mediated via the intrinsic mitochondrial pathway with decreased Bcl-2 and increased 7A6 (a mitochondrial membrane protein) expression. It was Fas independent and required caspases-3 and -9 activation. The process is highly specific for macrophage activation via CD40. These findings point to a novel mechanism of apoptosis induction in CD patients mediated by CD44v7 ligation
    corecore