3,704 research outputs found

    A Multi-Armed Bandit to Smartly Select a Training Set from Big Medical Data

    Full text link
    With the availability of big medical image data, the selection of an adequate training set is becoming more important to address the heterogeneity of different datasets. Simply including all the data does not only incur high processing costs but can even harm the prediction. We formulate the smart and efficient selection of a training dataset from big medical image data as a multi-armed bandit problem, solved by Thompson sampling. Our method assumes that image features are not available at the time of the selection of the samples, and therefore relies only on meta information associated with the images. Our strategy simultaneously exploits data sources with high chances of yielding useful samples and explores new data regions. For our evaluation, we focus on the application of estimating the age from a brain MRI. Our results on 7,250 subjects from 10 datasets show that our approach leads to higher accuracy while only requiring a fraction of the training data.Comment: MICCAI 2017 Proceeding

    Evidence for a fractional quantum Hall state with anisotropic longitudinal transport

    Get PDF
    At high magnetic fields, where the Fermi level lies in the N=0 lowest Landau level (LL), a clean two-dimensional electron system (2DES) exhibits numerous incompressible liquid phases which display the fractional quantized Hall effect (FQHE) (Das Sarma and Pinczuk, 1997). These liquid phases do not break rotational symmetry, exhibiting resistivities which are isotropic in the plane. In contrast, at lower fields, when the Fermi level lies in the N≄2N\ge2 third and several higher LLs, the 2DES displays a distinctly different class of collective states. In particular, near half filling of these high LLs the 2DES exhibits a strongly anisotropic longitudinal resistance at low temperatures (Lilly et al., 1999; Du et al., 1999). These "stripe" phases, which do not exhibit the quantized Hall effect, resemble nematic liquid crystals, possessing broken rotational symmetry and orientational order (Koulakov et al., 1996; Fogler et al., 1996; Moessner and Chalker, 1996; Fradkin and Kivelson, 1999; Fradkin et al, 2010). Here we report a surprising new observation: An electronic configuration in the N=1 second LL whose resistivity tensor simultaneously displays a robust fractionally quantized Hall plateau and a strongly anisotropic longitudinal resistance resembling that of the stripe phases.Comment: Nature Physics, (2011

    Wigner Crystallization in a Quasi-3D Electronic System

    Full text link
    When a strong magnetic field is applied perpendicularly (along z) to a sheet confining electrons to two dimensions (x-y), highly correlated states emerge as a result of the interplay between electron-electron interactions, confinement and disorder. These so-called fractional quantum Hall (FQH) liquids form a series of states which ultimately give way to a periodic electron solid that crystallizes at high magnetic fields. This quantum phase of electrons has been identified previously as a disorder-pinned two-dimensional Wigner crystal with broken translational symmetry in the x-y plane. Here, we report our discovery of a new insulating quantum phase of electrons when a very high magnetic field, up to 45T, is applied in a geometry parallel (y-direction) to the two-dimensional electron sheet. Our data point towards this new quantum phase being an electron solid in a "quasi-3D" configuration induced by orbital coupling with the parallel field

    A Factorization Law for Entanglement Decay

    Full text link
    We present a simple and general factorization law for quantum systems shared by two parties, which describes the time evolution of entanglement upon passage of either component through an arbitrary noisy channel. The robustness of entanglement-based quantum information processing protocols is thus easily and fully characterized by a single quantity.Comment: 4 pages, 5 figure

    Efficient and long-lived quantum memory with cold atoms inside a ring cavity

    Full text link
    Quantum memories are regarded as one of the fundamental building blocks of linear-optical quantum computation and long-distance quantum communication. A long standing goal to realize scalable quantum information processing is to build a long-lived and efficient quantum memory. There have been significant efforts distributed towards this goal. However, either efficient but short-lived or long-lived but inefficient quantum memories have been demonstrated so far. Here we report a high-performance quantum memory in which long lifetime and high retrieval efficiency meet for the first time. By placing a ring cavity around an atomic ensemble, employing a pair of clock states, creating a long-wavelength spin wave, and arranging the setup in the gravitational direction, we realize a quantum memory with an intrinsic spin wave to photon conversion efficiency of 73(2)% together with a storage lifetime of 3.2(1) ms. This realization provides an essential tool towards scalable linear-optical quantum information processing.Comment: 6 pages, 4 figure

    LRRK2 G2019S kinase activity triggers neurotoxic NSF aggregation

    Get PDF
    Parkinson’s disease is characterized by the progressive degeneration of dopaminergic neurons within the substantia nigra pars compacta and the presence of protein aggregates in surviving neurons. The LRRK2 G2019S mutation is one of the major determinants of familial Parkinson’s disease cases and leads to late-onset Parkinson’s disease with pleomorphic pathology, including α-synuclein accumulation and deposition of protein inclusions. We demonstrated that LRRK2 phosphorylates N-ethylmaleimide sensitive factor (NSF). We observed aggregates containing NSF in basal ganglia specimens from patients with Parkinson’s disease carrying the G2019S variant, and in cellular and animal models expressing the LRRK2 G2019S variant. We found that LRRK2 G2019S kinase activity induces the accumulation of NSF in toxic aggregates. Of note, the induction of autophagy cleared NSF aggregation and rescued motor and cognitive impairment observed in aged hG2019S bacterial artificial chromosome (BAC) mice. We suggest that LRRK2 G2019S pathological phosphorylation impacts on NSF biochemical properties, thus causing the formation of cytotoxic protein inclusions

    LRRK2 G2019S kinase activity triggers neurotoxic NSF aggregation

    Get PDF
    Parkinson’s disease (PD) is characterized by the progressive degeneration of dopaminergic neurons within the substantia nigra pars compacta and the presence of protein aggregates in surviving neurons. LRRK2 G2019S mutation is one of the major determinants of familial PD cases and leads to late-onset PD with pleomorphic pathology, including alpha-synuclein accumulation and deposition of protein inclusions. We demonstrated that LRRK2 phosphorylates N-ethylmaleimide sensitive factor (NSF). We observed aggregates containing NSF in basal ganglia specimens from G2019S carrier PD patients and in cellular and animal models expressing the LRRK2 G2019S variant. We found that LRRK2 G2019S kinase activity induces the accumulation of NSF in toxic aggregates. Noteworthy, the induction of autophagy cleared NSF aggregation and rescued motor and cognitive impairment observed in aged hG2019S BAC mice. We suggest that LRRK2 G2019S pathological phosphorylation hampers substrate catabolism, thus causing the formation of cytotoxic protein inclusions

    Integrity of H1 helix in prion protein revealed by molecular dynamic simulations to be especially vulnerable to changes in the relative orientation of H1 and its S1 flank

    Full text link
    In the template-assistance model, normal prion protein (PrPC), the pathogenic cause of prion diseases such as Creutzfeldt-Jakob (CJD) in human, Bovine Spongiform Encephalopathy (BSE) in cow, and scrapie in sheep, converts to infectious prion (PrPSc) through an autocatalytic process triggered by a transient interaction between PrPC and PrPSc. Conventional studies suggest the S1-H1-S2 region in PrPC to be the template of S1-S2 ÎČ\beta-sheet in PrPSc, and the conformational conversion of PrPC into PrPSc may involve an unfolding of H1 in PrPC and its refolding into the ÎČ\beta-sheet in PrPSc. Here we conduct a series of simulation experiments to test the idea of transient interaction of the template-assistance model. We find that the integrity of H1 in PrPC is vulnerable to a transient interaction that alters the native dihedral angles at residue Asn143^{143}, which connects the S1 flank to H1, but not to interactions that alter the internal structure of the S1 flank, nor to those that alter the relative orientation between H1 and the S2 flank.Comment: A major revision on statistical analysis method has been made. The paper now has 23 pages, 11 figures. This work was presented at 2006 APS March meeting session K29.0004 at Baltimore, MD, USA 3/13-17, 2006. This paper has been accepted for pubcliation in European Biophysical Journal on Feb 2, 200

    Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2

    Full text link
    Recent theories suggest that the excitations of certain quantum Hall states may have exotic braiding statistics which could be used to build topological quantum gates. This has prompted an experimental push to study such states using confined geometries where the statistics can be tested. We study the transport properties of quantum point contacts (QPCs) fabricated on a GaAs/AlGaAs two dimensional electron gas that exhibits well-developed fractional quantum Hall effect, including at bulk filling fraction 5/2. We find that a plateau at effective QPC filling factor 5/2 is identifiable in point contacts with lithographic widths of 1.2 microns and 0.8 microns, but not 0.5 microns. We study the temperature and dc-current-bias dependence of the 5/2 plateau in the QPC, as well as neighboring fractional and integer plateaus in the QPC while keeping the bulk at filling factor 3. Transport near QPC filling factor 5/2 is consistent with a picture of chiral Luttinger liquid edge-states with inter-edge tunneling, suggesting that an incompressible state at 5/2 forms in this confined geometry

    Detection of Exocometary CO within the 440 Myr Old Fomalhaut Belt: A Similar CO+CO 2 Ice Abundance in Exocomets and Solar System Comets

    Get PDF
    Recent Atacama Large Millimeter/submillimeter Array observations present mounting evidence for the presence of exocometary gas released within Kuiper Belt analogs around nearby main-sequence stars. This represents a unique opportunity to study their ice reservoir at the younger ages when volatile delivery to planets is most likely to occur. We here present the detection of CO J = 2-1 emission colocated with dust emission from the cometary belt in the 440 Myr old Fomalhaut system. Through spectrospatial filtering, we achieve a 5.4σ detection and determine that the ring's sky-projected rotation axis matches that of the star. The CO mass derived ((0.65\mbox{--}42)\times {10}^{-7}\,{M}_{\oplus }) is the lowest of any circumstellar disk detected to date and must be of exocometary origin. Using a steady-state model, we estimate the CO+CO2 mass fraction of exocomets around Fomalhaut to be between 4.6% and 76%, consistent with solar system comets and the two other belts known to host exocometary gas. This is the first indication of a similarity in cometary compositions across planetary systems that may be linked to their formation scenario and is consistent with direct interstellar medium inheritance. In addition, we find tentative evidence that (49±27)(49\pm 27)% of the detected flux originates from a region near the eccentric belt's pericenter. If confirmed, the latter may be explained through a recent impact event or CO pericenter glow due to exocometary release within a steady-state collisional cascade. In the latter scenario, we show how the azimuthal dependence of the CO release rate leads to asymmetries in gas observations of eccentric exocometary belts
    • 

    corecore