424 research outputs found

    Comparison of retinal nerve fiber layer thinning and retinal ganglion cell loss after optic nerve transection in adult albino rats

    Get PDF
    We compared the time-course and magnitude of retinal nerve fiber layer (RNFL) thinning with that of retinal ganglion cell (RGC) loss after intraorbital optic nerve transection (IONT) in adult rats

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    An Improved Technique for Chromosomal Analysis of Human ES and iPS Cells

    Get PDF
    Prolonged in vitro culture of human embryonic stem (hES) cells can result in chromosomal abnormalities believed to confer a selective advantage. This potential occurrence has crucial implications for the appropriate use of hES cells for research and therapeutic purposes. In view of this, time-point karyotypic evaluation to assess genetic stability is recommended as a necessary control test to be carried out during extensive ‘passaging’. Standard techniques currently used for the cytogenetic assessment of ES cells include G-banding and/or Fluorescence in situ Hybridization (FISH)-based protocols for karyotype analysis, including M-FISH and SKY. Critical for both banding and FISH techniques are the number and quality of metaphase spreads available for analysis at the microscope. Protocols for chromosome preparation from hES and human induced pluripotent stem (hiPS) cells published so far appear to differ considerably from one laboratory to another. Here we present an optimized technique, in which both the number and the quality of chromosome metaphase spreads were substantially improved when compared to current standard techniques for chromosome preparations. We believe our protocol represents a significant advancement in this line of work, and has the required attributes of simplicity and consistency to be widely accepted as a reference method for high quality, fast chromosomal analysis of human ES and iPS cells

    Immunohistochemical assessment of protein phosphorylation state: the dream and the reality

    Get PDF
    The development of phosphorylation state-specific antibodies (PSSAs) in the 1980s, and their subsequent proliferation promised to enable in situ analysis of the activation states of complex intracellular signaling networks. The extent to which this promise has been fulfilled is the topic of this review. I review some applications of PSSAs primarily in the assessment of solid tumor signaling pathway activation status. PSSAs have received considerable attention for their potential to reveal cell type-specific activation status, provide added prognostic information, aid in the prediction of response to therapy, and most recently, demonstrate the efficacy of kinase-targeted chemotherapies. However, despite some successes, many studies have failed to demonstrate added value of PSSAs over general antibody immunohistochemistry. Moreover, there is still a large degree of uncertainty about the interpretation of complex and heterogeneous staining patterns in tissue samples and their relationship to the actual phosphorylation states in vivo. The next phase of translational research in applications of PSSAs will entail the hard work of antibody validation, gathering of detailed information about epitope-specific lability, and implementation of methods for standardization

    Nocturia, Sleep-Disordered Breathing, and Cardiovascular Morbidity in a Community-Based Cohort

    Get PDF
    Background: Nocturia has been independently associated with cardiovascular morbidity and all-cause mortality, but such studies did not adjust for sleep-disordered breathing (SDB), which may have mediated such a relationship. Our aims were to determine whether an association between nocturia and cardiovascular morbidity exists that is independent of SDB. We also determined whether nocturia is independently associated with SDB. Methodology/Principal Findings: In order to accomplish these aims we performed a cross-sectional analysis of the Sleep Heart Health Study that contained information regarding SDB, nocturia, and cardiovascular morbidity in a middle-age to elderly community-based population. In 6342 participants (age 63±11 [SD] years, 53% women), after adjusting for known confounders such as age, body mass index, diuretic use, diabetes mellitus, alpha-blocker use, nocturia was independently associated with SDB (measured as Apnea Hypopnea index >15 per hour; OR 1.3; 95%CI, 1.2-1.5). After adjusting for SDB and other known confounders, nocturia was independently associated with prevalent hypertension (OR 1.23; 95%CI 1.08-1.40; P = 0.002), cardiovascular disease (OR 1.26; 95%CI 1.05-1.52; P = 0.02) and stroke (OR 1.62; 95%CI 1.14-2.30; P = 0.007). Moreover, nocturia was also associated with adverse objective alterations of sleep as measured by polysomnography and self-reported excessive daytime sleepiness (P<0.05). Conclusions/Significance: Nocturia is independently associated with sleep-disordered breathing. After adjusting for SDB, there remained an association between nocturia and cardiovascular morbidity. Such results support screening for SDB in patients with nocturia, but the mechanisms underlying the relationship between nocturia and cardiovascular morbidity requires further study. MeSH terms: Nocturia, sleep-disordered breathing, obstructive sleep apnea, sleep apnea, polysomnography, hypertension

    A MANBA mutation resulting in residual beta-mannosidase activity associated with severe leukoencephalopathy: a possible pseudodeficiency variant

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>β-Mannosidosis (OMIM 248510) is a rare inborn lysosomal storage disorder caused by the deficient activity of β-mannosidase, an enzyme encoded by a single gene (<it>MANBA</it>) located on chromosome 4q22-25. To date, only 20 cases of this autosomal recessive disorder have been described and 14 different <it>MANBA </it>mutations were incriminated in the disease. These are all null mutations or missense mutations that abolish β-mannosidase activity. In this study, we characterized the molecular defect of a new case of β-mannosidosis, presenting with a severe neurological disorder.</p> <p>Methods</p> <p>Genomic DNA was isolated from peripheral blood leukocytes of the patient to allow <it>MANBA </it>sequencing. The identified mutation was engineered by site-directed mutagenesis and the mutant protein was expressed through transient transfection in HEK293T cells. The β-mannosidase expression and activity were respectively assessed by Western blot and fluorometric assay in both leukocytes and HEK293T cells.</p> <p>Results</p> <p>A missense disease-associated mutation, c.1922G>A (p.Arg641His), was identified for which the patient was homozygous. In contrast to previously described missense mutations, this substitution does not totally abrogate the enzyme activity but led to a residual activity of about 7% in the patient's leukocytes, 11% in lymphoblasts and 14% in plasma. Expression studies in transfected cells also resulted in 7% residual activity.</p> <p>Conclusion</p> <p>Correlations between MANBA mutations, residual activity of β-mannosidase and the severity of the ensuing neurological disorder are discussed. Whether the c.1922G>A mutation is responsible for a yet undescribed pseudodeficiency of β-mannosidase is also discussed.</p

    Igf1r Signaling Is Indispensable for Preimplantation Development and Is Activated via a Novel Function of E-cadherin

    Get PDF
    Insulin-like growth factor I receptor (Igf1r) signaling controls proliferation, differentiation, growth, and cell survival in many tissues; and its deregulated activity is involved in tumorigenesis. Although important during fetal growth and postnatal life, a function for the Igf pathway during preimplantation development has not been described. We show that abrogating Igf1r signaling with specific inhibitors blocks trophectoderm formation and compromises embryo survival during murine blastocyst formation. In normal embryos total Igf1r is present throughout the membrane, whereas the activated form is found exclusively at cell contact sites, colocalizing with E-cadherin. Using genetic domain switching, we show a requirement for E-cadherin to maintain proper activation of Igf1r. Embryos expressing exclusively a cadherin chimera with N-cadherin extracellular and E-cadherin intracellular domains (NcEc) fail to form a trophectoderm and cells die by apoptosis. In contrast, homozygous mutant embryos expressing a reverse-structured chimera (EcNc) show trophectoderm survival and blastocoel cavitation, indicating a crucial and non-substitutable role of the E-cadherin ectodomain for these processes. Strikingly, blastocyst formation can be rescued in homozygous NcEc embryos by restoring Igf1r signaling, which enhances cell survival. Hence, perturbation of E-cadherin extracellular integrity, independent of its cell-adhesion function, blocked Igf1r signaling and induced cell death in the trophectoderm. Our results reveal an important and yet undiscovered function of Igf1r during preimplantation development mediated by a unique physical interaction between Igf1r and E-cadherin indispensable for proper receptor activation and anti-apoptotic signaling. We provide novel insights into how ligand-dependent Igf1r activity is additionally gated to sense developmental potential in utero and into a bifunctional role of adhesion molecules in contact formation and signaling

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Modified cantilever arrays improve sensitivity and reproducibility of nanomechanical sensing in living cells

    Get PDF
    Mechanical signaling involved in molecular interactions lies at the heart of materials science and biological systems, but the mechanisms involved are poorly understood. Here we use nanomechanical sensors and intact human cells to provide unique insights into the signaling pathways of connectivity networks, which deliver the ability to probe cells to produce biologically relevant, quantifiable and reproducible signals. We quantify the mechanical signals from malignant cancer cells, with 10 cells per ml in 1000-fold excess of non-neoplastic human epithelial cells. Moreover, we demonstrate that a direct link between cells and molecules creates a continuous connectivity which acts like a percolating network to propagate mechanical forces over both short and long length-scales. The findings provide mechanistic insights into how cancer cells interact with one another and with their microenvironments, enabling them to invade the surrounding tissues. Further, with this system it is possible to understand how cancer clusters are able to co-ordinate their migration through narrow blood capillaries
    corecore