807 research outputs found

    Troubling "understanding mathematics-in-depth": Its role in the identity work of student-teachers in England

    Get PDF
    Copyright @ The Author(s) 2013. This article is published with open access at Springerlink.comThis article has been made available through the Brunel Open Access Publishing Fund.In this paper, we focus on an initiative in England devised to prepare non-mathematics graduates to train as secondary mathematics teachers through a 6-month Mathematics Enhancement Course (MEC) to boost their subject knowledge. The course documentation focuses on the need to develop “understanding mathematics in-depth” in students in order for them to become successful mathematics teachers. We take a poststructural approach, so we are not interested in asking what such an understanding is, about the value of this approach or about the effectiveness of the MECs in developing this understanding in their participants. Instead we explore what positions this discourse of “understanding mathematics in-depth” makes available to MEC students. We do this by looking in detail at the “identity work” of two students, analysing how they use and are used by this discourse to position themselves as future mathematics teachers. In doing so, we show how even benign-looking social practices such as “understanding mathematics in-depth” are implicated in practices of inclusion and exclusion. We show this through detailed readings of interviews with two participants, one of whom fits with the dominant discourses in the MEC and the other who, despite passing the MEC, experiences tensions between her national identity work and MEC discourses. We argue that it is vital to explore “identity work” within teacher education contexts to ensure that becoming a successful mathematics teacher is equally available to all.King’s College Londo

    Long-Range Rapidity Correlations in Heavy Ion Collisions at Strong Coupling from AdS/CFT

    Full text link
    We use AdS/CFT correspondence to study two-particle correlations in heavy ion collisions at strong coupling. Modeling the colliding heavy ions by shock waves on the gravity side, we observe that at early times after the collision there are long-range rapidity correlations present in the two-point functions for the glueball and the energy-momentum tensor operators. We estimate rapidity correlations at later times by assuming that the evolution of the system is governed by ideal Bjorken hydrodynamics, and find that glueball correlations in this state are suppressed at large rapidity intervals, suggesting that late-time medium dynamics can not "wash out" the long-range rapidity correlations that were formed at early times. These results may provide an insight on the nature of the "ridge" correlations observed in heavy ion collision experiments at RHIC and LHC, and in proton-proton collisions at LHC.Comment: 32 pages, 2 figures; v2: typos corrected, references adde

    Stochastic population growth in spatially heterogeneous environments

    Full text link
    Classical ecological theory predicts that environmental stochasticity increases extinction risk by reducing the average per-capita growth rate of populations. To understand the interactive effects of environmental stochasticity, spatial heterogeneity, and dispersal on population growth, we study the following model for population abundances in nn patches: the conditional law of Xt+dtX_{t+dt} given Xt=xX_t=x is such that when dtdt is small the conditional mean of Xt+dtiXtiX_{t+dt}^i-X_t^i is approximately [xiμi+j(xjDjixiDij)]dt[x^i\mu_i+\sum_j(x^j D_{ji}-x^i D_{ij})]dt, where XtiX_t^i and μi\mu_i are the abundance and per capita growth rate in the ii-th patch respectivly, and DijD_{ij} is the dispersal rate from the ii-th to the jj-th patch, and the conditional covariance of Xt+dtiXtiX_{t+dt}^i-X_t^i and Xt+dtjXtjX_{t+dt}^j-X_t^j is approximately xixjσijdtx^i x^j \sigma_{ij}dt. We show for such a spatially extended population that if St=(Xt1+...+Xtn)S_t=(X_t^1+...+X_t^n) is the total population abundance, then Yt=Xt/StY_t=X_t/S_t, the vector of patch proportions, converges in law to a random vector YY_\infty as tt\to\infty, and the stochastic growth rate limtt1logSt\lim_{t\to\infty}t^{-1}\log S_t equals the space-time average per-capita growth rate \sum_i\mu_i\E[Y_\infty^i] experienced by the population minus half of the space-time average temporal variation \E[\sum_{i,j}\sigma_{ij}Y_\infty^i Y_\infty^j] experienced by the population. We derive analytic results for the law of YY_\infty, find which choice of the dispersal mechanism DD produces an optimal stochastic growth rate for a freely dispersing population, and investigate the effect on the stochastic growth rate of constraints on dispersal rates. Our results provide fundamental insights into "ideal free" movement in the face of uncertainty, the persistence of coupled sink populations, the evolution of dispersal rates, and the single large or several small (SLOSS) debate in conservation biology.Comment: 47 pages, 4 figure

    Neuroleptic-induced movement disorders in a naturalistic schizophrenia population: diagnostic value of actometric movement patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroleptic-induced movement disorders (NIMDs) have overlapping co-morbidity. Earlier studies have described typical clinical movement patterns for individual NIMDs. This study aimed to identify specific movement patterns for each individual NIMD using actometry.</p> <p>Methods</p> <p>A naturalistic population of 99 schizophrenia inpatients using conventional antipsychotics and clozapine was evaluated. Subjects with NIMDs were categorized using the criteria for NIMD found in the Diagnostic and Statistical Manual for Mental Disorders – Fourth Edition (DSM-IV).</p> <p>Two blinded raters evaluated the actometric-controlled rest activity data for activity periods, rhythmical activity, frequencies, and highest acceleration peaks. A simple subjective question was formulated to test patient-based evaluation of NIMD.</p> <p>Results</p> <p>The patterns of neuroleptic-induced akathisia (NIA) and pseudoakathisia (PsA) were identifiable in actometry with excellent inter-rater reliability. The answers to the subjective question about troubles with movements distinguished NIA patients from other patients rather well. Also actometry had rather good screening performances in distinguishing akathisia from other NIMD. Actometry was not able to reliably detect patterns of neuroleptic-induced parkinsonism and tardive dyskinesia.</p> <p>Conclusion</p> <p>The present study showed that pooled NIA and PsA patients had a different pattern in lower limb descriptive actometry than other patients in a non-selected sample. Careful questioning of patients is a useful method of diagnosing NIA in a clinical setting.</p

    Modeling E. coli Tumbles by Rotational Diffusion. Implications for Chemotaxis

    Get PDF
    The bacterium Escherichia coli in suspension in a liquid medium swims by a succession of runs and tumbles, effectively describing a random walk. The tumbles randomize incompletely, i.e. with a directional persistence, the orientation taken by the bacterium. Here, we model these tumbles by an active rotational diffusion process characterized by a diffusion coefficient and a diffusion time. In homogeneous media, this description accounts well for the experimental reorientations. In shallow gradients of nutrients, tumbles are still described by a unique rotational diffusion coefficient. Together with an increase in the run length, these tumbles significantly contribute to the net chemotactic drift via a modulation of their duration as a function of the direction of the preceding run. Finally, we discuss the limits of this model in propagating concentration waves characterized by steep gradients. In that case, the effective rotational diffusion coefficient itself varies with the direction of the preceding run. We propose that this effect is related to the number of flagella involved in the reorientation process

    The Burkholderia pseudomallei Type III Secretion System and BopA Are Required for Evasion of LC3-Associated Phagocytosis

    Get PDF
    Burkholderia pseudomallei is the causative agent of melioidosis, a fatal infectious disease endemic in tropical regions worldwide, and especially prevalent in southeast Asia and northern Australia. This intracellular pathogen can escape from phagosomes into the host cytoplasm, where it replicates and infects adjacent cells. We previously demonstrated that, in response to B. pseudomallei infection of macrophage cell line RAW 264.7, a subset of bacteria co-localized with the autophagy marker protein, microtubule-associated protein light chain 3 (LC3), implicating autophagy in host cell defence against infection. Recent reports have suggested that LC3 can be recruited to both phagosomes and autophagosomes, thereby raising questions regarding the identity of the LC3-positive compartments in which invading bacteria reside and the mechanism of the autophagic response to B. pseudomallei infection. Electron microscopy analysis of infected cells demonstrated that the invading bacteria were either free in the cytosol, or sequestered in single-membrane phagosomes rather than double-membrane autophagosomes, suggesting that LC3 is recruited to B. pseudomallei-containing phagosomes. Partial or complete loss of function of type III secretion system cluster 3 (TTSS3) in mutants lacking the BopA (effector) or BipD (translocator) proteins respectively, resulted in delayed or no escape from phagosomes. Consistent with these observations, bopA and bipD mutants both showed a higher level of co-localization with LC3 and the lysosomal marker LAMP1, and impaired survival in RAW264.7 cells, suggesting enhanced killing in phagolysosomes. We conclude that LC3 recruitment to phagosomes stimulates killing of B. pseudomallei trapped in phagosomes. Furthermore, BopA plays an important role in efficient escape of B. pseudomallei from phagosomes

    Magnetism, FeS colloids, and Origins of Life

    Full text link
    A number of features of living systems: reversible interactions and weak bonds underlying motor-dynamics; gel-sol transitions; cellular connected fractal organization; asymmetry in interactions and organization; quantum coherent phenomena; to name some, can have a natural accounting via physicalphysical interactions, which we therefore seek to incorporate by expanding the horizons of `chemistry-only' approaches to the origins of life. It is suggested that the magnetic 'face' of the minerals from the inorganic world, recognized to have played a pivotal role in initiating Life, may throw light on some of these issues. A magnetic environment in the form of rocks in the Hadean Ocean could have enabled the accretion and therefore an ordered confinement of super-paramagnetic colloids within a structured phase. A moderate H-field can help magnetic nano-particles to not only overcome thermal fluctuations but also harness them. Such controlled dynamics brings in the possibility of accessing quantum effects, which together with frustrations in magnetic ordering and hysteresis (a natural mechanism for a primitive memory) could throw light on the birth of biological information which, as Abel argues, requires a combination of order and complexity. This scenario gains strength from observations of scale-free framboidal forms of the greigite mineral, with a magnetic basis of assembly. And greigite's metabolic potential plays a key role in the mound scenario of Russell and coworkers-an expansion of which is suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed Krishnaswami Alladi, Springer 201
    corecore