7 research outputs found

    Amperometric Polyphenol Biosensor Based on Tyrosinase Immobilization on CoAl Layered Double Hydroxide Thins Films

    No full text
    International audienceAn amperometric biosensor based on tyrosinase immobilized on the sensor surface has been used for the detection of polyphenols extracted from green tea. The immobilization was ensured by the crosslinking method on thins films of CoAlSO 4 layered double hydroxide recovering screen-printed gold electrodes. Electrochemical measurements show that this biosensor is able to detect tea polyphenols by following the reduction of compounds enzymatically generated. Its response is linear in the concentration range of [0-2,4 µM] with high sensitivity and stability, since it retains 90% of its original response after 20 days

    Membrane damages in bacteria interacting with silica nanoparticles revealed by AFM

    No full text
    Nanoparticles (NPs) can interact with biological systems, with either negative or positive consequences (potential risks or elimination of pathogenic bacteria). In this context, we investigate the morphology and physico-chemical properties of Escherichia coli bacteria interacting with silica NPs by Atomic Force Microscopy (AFM), this method providing access to topographic information and local rheological properties at the nm scale (with a discrimination between “hard”, NPs, and “soft”, bacteria, materials), either in air or physiological environment. AFM images show that silica NPs tend to aggregate around bacteria, their further action depending on their diameter. The presence of big NPs (100 and 200 nm) does not change E. coli morphology, bacteria remaining rod-shaped and high. The bacterial external membrane keeps also its organization in domains, suggesting that such NPs are too voluminous to penetrate into bacteria. On the contrary, in the presence of small NPs (4 and 10 nm) bacteria adopt unusual spherical shapes, some of them even suffering from a partial collapse, leading to the release of cellular compounds. The external membrane is also disturbed, exhibiting spherical aggregates, which could be due to a reorganization of lipopolysaccharides present in this membrane

    Membrane damages in bacteria interacting with silica nanoparticles revealed by AFM

    No full text
    International audienceNanoparticles (NPs) can interact with biological systems, with either negative or positive consequences (potential risks or elimination of pathogenic bacteria). In this context, we investigate the morphology and physico-chemical properties of Escherichia coli bacteria interacting with silica NPs by Atomic Force Microscopy (AFM), this method providing access to topographic information and local rheological properties at the nm scale (with a discrimination between “hard”, NPs, and “soft”, bacteria, materials), either in air or physiological environment. AFM images show that silica NPs tend to aggregate around bacteria, their further action depending on their diameter. The presence of big NPs (100 and 200 nm) does not change E. coli morphology, bacteria remaining rod-shaped and high. The bacterial external membrane keeps also its organization in domains, suggesting that such NPs are too voluminous to penetrate into bacteria. On the contrary, in the presence of small NPs (4 and 10 nm) bacteria adopt unusual spherical shapes, some of them even suffering from a partial collapse, leading to the release of cellular compounds. The external membrane is also disturbed, exhibiting spherical aggregates, which could be due to a reorganization of lipopolysaccharides present in this membrane

    High sensitive mesoporous TiO2-coated Love wave device for heavy metal detection

    No full text
    This work deals with the design of a highly sensitive whole cell-based biosensor for heavy metal detection in liquid medium. The biosensor is constituted of a Love wave sensor coated with a polyelectrolyte multilayer (PEM). Escherichia Coli bacteria are used as bioreceptors as their viscoelastic properties are influenced by toxic heavy metals. The acoustic sensor is constituted of a quartz substrate with interdigitated transducers and a SiO2 guiding layer. However, SiO2 shows some degradation when used in a saline medium. Mesoporous TiO2 presents good mechanical and chemical stability and offers a high active surface area. Then, the addition of a thin titania layer dip-coated onto the acoustic path of the sensor is proposed to overcome the silica degradation and to improve the mass effect sensitivity of the acoustic device. \{PEM\} and bacteria deposition, and heavy metal influence, are real time monitored through the resonance frequency variations of the acoustic device. The first polyelectrolyte layer is inserted through the titania mesoporosity, favouring rigid link of the \{PEM\} on the sensor and improving the device sensitivity. Also, the mesoporosity of surface increases the specific surface area which can be occupied and favors the formation of homogeneous PEM. It was found a frequency shift near 20±1kHz for bacteria immobilization with titania film instead of 7±3kHz with bare silica surface. The sensitivity is highlighted towards cadmium detection. Moreover, in this paper, particular attention is given to the immobilization of bacteria and to biosensor lifetime. Atomic Force Microscopy characterizations of the biosurface have been done for several weeks. They showed significant morphological differences depending on the bacterial life time. We noticed that the lifetime of the biosensor is longer in the case of using a mesoporous TiO2 layer.Immunocapteur à ondes de Love ultra-sensible pour la détection rapide de micro-organismes dans l'eau, visant la réalisation d'un dispositif d'alert

    Revisiting of the physico-chemical properties of polyelectrolyte multilayers for a fine tuning of the immobilization of bacteria or nanoparticles

    No full text
    Increasingly used in industrial coatings, polyelectrolytes multilayers (PEMs) are self-assembled systems made of the alternate deposition of oppositely charged polymers on substrates, usually built by the traditional layer-by-layer method. Their properties strongly depend on environmental physico-chemical parameters. Due to the variety of conditions used in the literature on the one hand and the diversity of polyelectrolytes systems on the other hand, it remains difficult to bring out general principles, leading now to a lack of a real understanding of the PEM buildup, from the macro- to the nanoscale. Here, combining acoustic and electrochemical methods with atomic force microscopy, in a systematic approach, we uncover the critical role of the deposition protocol in the growth regime of PEMs made of cationic poly (allylamine hydrochloride) and anionic poly(4-styrene sulfonate, sodium). Traditional dipping leads to thick, heterogeneous and relatively isolating PEMs whereas a spin-coating assisted method leads to thinner, homogeneous and more permeable PEMs. We also highlight that the pH and the ionic strength influence not only the electrostatic interactions and polyelectrolyte conformation in solution but also their organization after their adsorption on the substrate. Finally, our easily and rapidly adaptable protocol paves the way for promising potential bio-applications, since PEMs are applied to the bacterial immobilization on substrates or as a coating for nanostructured biosensor transducer.Immunocapteur à ondes de Love ultra-sensible pour la détection rapide de micro-organismes dans l'eau, visant la réalisation d'un dispositif d'alert
    corecore