1,257 research outputs found

    Discovery of very high energy gamma-ray emission in the W 28 (G6.4-0.1) region, and multiwavelength comparisons

    Full text link
    H.E.S.S. observations of the old-age (>10^4yr; ~0.5deg diameter) composite supernova remnant (SNR) W 28 reveal very high energy (VHE) gamma-ray emission situated at its northeastern and southern boundaries. The northeastern VHE source (HESS J1801-233) is in an area where W 28 is interacting with a dense molecular cloud, containing OH masers, local radio and X-ray peaks. The southern VHE sources (HESS J1800-240 with components labelled A, B and C) are found in a region occupied by several HII regions, including the ultracompact HII region W 28A2. Our analysis of NANTEN CO data reveals a dense molecular cloud enveloping this southern region, and our reanalysis of EGRET data reveals MeV/GeV emission centred on HESS J1801-233 and the northeastern interaction region.Comment: 4 pages, 3 figures, proceedings of the 30th ICRC, Merida, Mexico, 200

    Nonthermal X-radiation of SNR RX J1713.7-3946: The Relations to a Nearby Molecular Cloud

    Full text link
    The recent X-ray and CO observations of RX J1713.7-3946 show that a significant fraction of the nonthermal X-ray emission of this unique supernova remnant associates, in one way or another, with a molecular cloud interacting with the west part of the shell. This adds a new puzzle in the origin of X-ray emission which cannot be easily explained within the standard model in accordance of which X-rays are result of synchrotron radiation of multi-TeV electrons accelerated by supernova shock waves. We explore an alternative origin of the X-ray emission assuming that it is produced by secondary electrons resulting from high energy hadronic interactions in the molecular gas. Such a scenario could explain in a quite natural way the apparent correlation between the X-ray and CO morphologies. However, the TeV gamma-ray emission recently reported by H.E.S.S. significantly constrains the parameter space of this model. Namely, this mechanism cannot reproduce the bulk of the observed X-ray flux unless one postulates existence of a PeV cosmic-ray component penetrating with an unusually hard spectrum into the dense cloud.Comment: 6 pages, 3 figures, to appear in Proc. of Int. Symp. on High Energy Gamma-ray Astronomy, Heidelberg (July 2004

    Chandra Observations of A Galactic Supernova Remnant Vela Jr.: A New Sample of Thin Filaments Emitting Synchrotron X-Rays

    Get PDF
    A galactic supernova remnant (SNR) Vela Jr. (RX J0852.0−-4622, G266.6−-1.2) shows sharp filamentary structure on the north-western edge of the remnant in the hard X-ray band. The filaments are so smooth and located on the most outer side of the remnant. We measured the averaged scale width of the filaments (wuw_u and wdw_d) with excellent spatial resolution of {\it Chandra}, which are in the order of the size of the point spread function of {\it Chandra} on the upstream side and 49.5 (36.0--88.8) arcsec on the downstream side, respectively. The spectra of the filaments are very hard and have no line-like structure, and were well reproduced with an absorbed power-law model with Γ=\Gamma = 2.67 (2.55--2.77), or a {\tt SRCUT} model with νrolloff\nu_{rolloff} = 4.3 (3.4--5.3)×1016\times 10^{16} Hz under the assumption of p=0.3p=0.3. These results imply that the hard X-rays are synchrotron radiation emitted by accelerated electrons, as mentioned previously. Using a correlation between a function B≡νrolloff/wd2{\cal B} \equiv \nu_{rolloff}/w_d^2 and the SNR age, we estimated the distance and the age of Vela Jr.: the estimated distance and age are 0.33 (0.26--0.50) kpc and 660 (420--1400) years, respectively. These results are consistent with previous reports, implying that B{\cal B}--age relation may be a useful tool to estimate the distance and the age of synchrotron X-ray emitting SNRs.Comment: 19 pages, 8 figures, ApJ, in pres

    XMM-Newton observations of HESS J1813-178 reveal a composite Supernova remnant

    Get PDF
    We present X-ray and 12CO(J=1-0) observations of the very-high-energy (VHE) gamma-ray source HESS J1813-178 with the aim of understanding the origin of the gamma-ray emission. Using this dataset we are able to undertake spectral and morphological studies of the X-ray emission from this object with greater precision than previous studies. NANTEN 12CO(J=1-0) data are used to search for correlations of the gamma-ray emission with molecular clouds which could act as target material for gamma-ray production in a hadronic scenario. The NANTEN 12CO(J=1-0) observations show a giant molecular cloud of mass 2.5 10^5 M_{\sun} at a distance of 4 kpc in the vicinity of HESS J1813-178. Even though there is no direct positional coincidence, this giant cloud might have influenced the evolution of the gamma-ray source and its surroundings. The X-ray data show a highly absorbed non-thermal X-ray emitting object coincident with the previously known ASCA source AX J1813-178 showing a compact core and an extended tail towards the north-east, located in the centre of the radio shell-type Supernova remnant (SNR) G12.82-0.2. This central object shows morphological and spectral resemblance to a Pulsar Wind Nebula (PWN) and we therefore consider that the object is very likely to be a composite SNR. We discuss the scenario in which the gamma-rays originate in the shell of the SNR and the one in which they originate in the central object. We demonstrate, that in order to connect the core X-ray emission to the VHE gamma-ray emission electrons have to be accelerated to energies of at least 1 PeV.Comment: Submitted to A&

    The multi-band nonthermal emission from the supernova remnant RX J1713.7-3946

    Full text link
    Nonthermal X-rays and very high-energy (VHE) γ\gamma-rays have been detected from the supernova remnant (SNR) RX J1713.7-3946, and especially the recent observations with the \textit{Suzaku} satellite clearly reveal a spectral cutoff in the X-ray spectrum, which directly relates to the cutoff of the energy spectrum of the parent electrons. However, whether the origin of the VHE γ\gamma-rays from the SNR is hadronic or leptonic is still in debate. We studied the multi-band nonthermal emission from RX J1713.7-3946 based on a semi-analytical approach to the nonlinear shock acceleration process by including the contribution of the accelerated electrons to the nonthermal radiation. The results show that the multi-band observations on RX J1713.7-3946 can be well explained in the model with appropriate parameters and the TeV γ\gamma-rays have hadronic origin, i.e., they are produced via proton-proton (p-p) interactions as the relativistic protons accelerated at the shock collide with the ambient matter.Comment: 6 pages, 5 figures, accepted by MNRA

    Different mechanism of two-proton emission from proton-rich nuclei 23^{23}Al and 22^{22}Mg

    Get PDF
    Two-proton relative momentum (qppq_{pp}) and opening angle (θpp\theta_{pp}) distributions from the three-body decay of two excited proton-rich nuclei, namely 23^{23}Al →\rightarrow p + p + 21^{21}Na and 22^{22}Mg →\rightarrow p + p + 20^{20}Ne, have been measured with the projectile fragment separator (RIPS) at the RIKEN RI Beam Factory. An evident peak at qpp∼20q_{pp}\sim20 MeV/c as well as a peak in θpp\theta_{pp} around 30∘^\circ are seen in the two-proton break-up channel from a highly-excited 22^{22}Mg. In contrast, such peaks are absent for the 23^{23}Al case. It is concluded that the two-proton emission mechanism of excited 22^{22}Mg is quite different from the 23^{23}Al case, with the former having a favorable diproton emission component at a highly excited state and the latter dominated by the sequential decay process
    • …
    corecore