32,888 research outputs found

    The Bak-Sneppen Model on Scale-Free Networks

    Full text link
    We investigate by numerical simulations and analytical calculations the Bak-Sneppen model for biological evolution in scale-free networks. By using large scale numerical simulations, we study the avalanche size distribution and the activity time behavior at nodes with different connectivities. We argue the absence of a critical barrier and its associated critical behavior for infinite size systems. These findings are supported by a single site mean-field analytic treatment of the model.Comment: 5 pages and 3 eps figures. Final version appeared in Europhys. Let

    Self-dual Chern-Simons solitons in noncommutative space

    Get PDF
    We construct exact soliton solutions to the Chern-Simons-Higgs system in noncommutative space, for non-relativistic and relativistic models. In both cases we find regular vortex-like solutions to the BPS equations which approach the ordinary selfdual non-topological and topological solitons when the noncommutative parameter θ\theta goes to zero.Comment: 15 pages, 4 figure

    Broadening of H2_2O rotational lines by collision with He atoms at low temperature

    Get PDF
    We report pressure broadening coefficients for the 21 electric-dipole transitions between the eight lowest rotational levels of ortho-H2_2O and para-H2_2O molecules by collisions with He at temperatures from 20 to 120 K. These coefficients are derived from recently published experimental state-to-state rate coefficients for H2_2O:He inelastic collisions, plus an elastic contribution from close coupling calculations. The resulting coefficients are compared to the available experimental data. Mostly due to the elastic contribution, the pressure broadening coefficients differ much from line to line, and increase markedly at low temperature. The present results are meant as a guide for future experiments and astrophysical observations.Comment: 2 figures, 2 table

    Particle-vortex dynamics in noncommutative space

    Get PDF
    We study the problem of a charged particle in the presence of a uniform magnetic field plus a vortex in noncommutative planar space considering the two possible non-commutative extensions of the corresponding Hamiltonian, namely the ``fundamental'' and the ``antifundamental'' representations. Using a Fock space formalism we construct eigenfunctions and eigenvalues finding in each case half of the states existing in the ordinary space case. In the limit of θ→0\theta \to 0 we recover the two classes of states found in ordinary space, relevant for the study of anyon physics.Comment: 13 pages, no figures, plain LaTeX. References adde

    CO-PrOx over nano-Au/TiO2: Monolithic catalyst performance and empirical kinetic model fitting

    Get PDF
    In this work, the performance of ceramic monoliths washcoated with Au/TiO2 is studied on CO preferential oxidation (CO-PrOx) reaction in H2-rich environments under a wide range of operating conditions of practical interest. The parameter estimation of a nonlinear kinetic empirical model representing this system is made via genetic algorithms by fitting the model predictions against our laboratory observations. Parameter uncertainty leading to inaccurate predictions is often present when kinetic models with nonlinear rate equations are considered. Here, after the fitting was concluded, a statistical study was conducted to determine the accuracy of the parameter estimation. Activation energies of ca. 30 kJ/mol and 55 kJ/mol were adjusted for CO and H2 oxidations, respectively. The catalyst showed appropriate activity and selectivity values on the CO oxidation on a H2-rich environment. After ca. 45 h on stream the catalyst showed no deactivation. Results show that the model is suitable for reproducing the behavior of the CO-PrOx reactions and it can be used in the design of reactors for hydrogen purification.Peer ReviewedPostprint (author's final draft

    Thermodynamic Consistency of the Dynamical Mean-Field Theory of the Double-Exchange Model

    Get PDF
    Although diagrammatic perturbation theory fails for the dynamical-mean field theory of the double-exchange model, the theory is nevertheless Phi-derivable and hence thermodynamically consistent, meaning that the same thermodynamic properties are obtained from either the partition function or the Green's function. We verify this consistency by evaluating the magnetic susceptibility and Curie temperature for any Hund's coupling.Comment: 9 pages, 1 figur

    Entanglement of two qubits mediated by one-dimensional plasmonic waveguides

    Get PDF
    We investigate qubit-qubit entanglement mediated by plasmons supported by one-dimensional waveguides. We explore both the situation of spontaneous formation of entanglement from an unentangled state and the emergence of driven steady-state entanglement under continuous pumping. In both cases, we show that large values for the concurrence are attainable for qubit-qubit distances larger than the operating wavelength by using plasmonic waveguides that are currently available.Comment: 4 pages, 4 figures. Minor Changes. Journal Reference added. Highlighted in Physic

    Energy landscape of a simple model for strong liquids

    Full text link
    We calculate the statistical properties of the energy landscape of a minimal model for strong network-forming liquids. Dynamics and thermodynamic properties of this model can be computed with arbitrary precision even at low temperatures. A degenerate disordered ground state and logarithmic statistics for the energy distribution are the landscape signatures of strong liquid behavior. Differences from fragile liquid properties are attributed to the presence of a discrete energy scale, provided by the particle bonds, and to the intrinsic degeneracy of topologically disordered networks.Comment: Revised versio

    Non-Gaussian energy landscape of a simple model for strong network-forming liquids: accurate evaluation of the configurational entropy

    Full text link
    We present a numerical study of the statistical properties of the potential energy landscape of a simple model for strong network-forming liquids. The model is a system of spherical particles interacting through a square well potential, with an additional constraint that limits the maximum number of bonds, NmaxN_{\rm max}, per particle. Extensive simulations have been carried out as a function of temperature, packing fraction, and NmaxN_{\rm max}. The dynamics of this model are characterized by Arrhenius temperature dependence of the transport coefficients and by nearly exponential relaxation of dynamic correlators, i.e. features defining strong glass-forming liquids. This model has two important features: (i) landscape basins can be associated with bonding patterns; (ii) the configurational volume of the basin can be evaluated in a formally exact way, and numerically with arbitrary precision. These features allow us to evaluate the number of different topologies the bonding pattern can adopt. We find that the number of fully bonded configurations, i.e. configurations in which all particles are bonded to NmaxN_{\rm max} neighbors, is extensive, suggesting that the configurational entropy of the low temperature fluid is finite. We also evaluate the energy dependence of the configurational entropy close to the fully bonded state, and show that it follows a logarithmic functional form, differently from the quadratic dependence characterizing fragile liquids. We suggest that the presence of a discrete energy scale, provided by the particle bonds, and the intrinsic degeneracy of fully bonded disordered networks differentiates strong from fragile behavior.Comment: Final version. Journal of Chemical Physics 124, 204509 (2006
    • …
    corecore