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Abstract 

In this work, the performance of ceramic monoliths washcoated with Au/TiO2 is studied on CO 

preferential oxidation (CO-PrOx) reaction in H2-rich environments under a wide range of 

operating conditions of practical interest. The parameter estimation of a nonlinear kinetic 

empirical model representing this system is made via genetic algorithms by fitting the model 

predictions against our laboratory observations. Parameter uncertainty leading to inaccurate 

predictions is often present when kinetic models with nonlinear rate equations are considered. 

Here, after the fitting was concluded, a statistical study was conducted to determine the accuracy 

of the parameter estimation. Activation energies of ca. 30 kJ/mol and 55 kJ/mol were adjusted 

for CO and H2 oxidations, respectively. The catalyst showed appropriate activity and selectivity 
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values on the CO oxidation on a H2-rich environment. After ca. 45 h on stream the catalyst 

showed no deactivation. Results show that the model is suitable for reproducing the behaviour of 

the CO-PrOx reactions and it can be used in the design of reactors for hydrogen purification. 

Keywords: CO-PrOx; Au/TiO2 structured catalyst; Parameter estimation; Confidence intervals; 

Confidence regions. 

 

1. Introduction 

 

Power consumption requirement in nowadays electronics and electrical utilities moved 

researchers towards the implementation of fuel cells systems with improved efficiencies. 

Specifically, PEM-type fuel cells are preferred for reduced-scale equipment. These units require 

as feed a hydrogen stream with extremely low levels of carbon monoxide to avoid the poisoning 

of the platinum catalyst of the fuel cell anode. In this frame, the preferential oxidation of CO in a 

H2-rich atmosphere over an appropriate catalyst appears attractive due to its fairly simple 

implementation, lower operation costs, and minimal loss H2 [1].  

As the oxidation of carbon monoxide (Eq. (1)) competes here with the oxidation of H2 (Eq. 

(2)), it is mandatory to develop highly selective catalysts. To this aim, many catalyst 

formulations have been studied including metal oxides (e.g., CuO–CeO2) and noble metals (Au, 

Pt, Ru, Rh, and Ir) [2]. Ru is known to be also active for CO2 methanation and can be readily 

deactivated upon exposure to oxygen-containing stream. Rh and Ir catalysts are less selective 

than Ru catalysts and seldom considered for this application [2]. The platinum group metals 

supported on reducible metal oxides exhibit good performance. However, the requirement for 
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high temperatures and the insufficient control over the unwanted conversion of H2 have been the 

main drawbacks associated with the platinum group metal catalysts. On the other hand, 

supported gold catalysts exhibit very high performance for low-temperature CO oxidation, 

provided the gold is present in particles of a few nanometers [3].  

 

CO + ½ O2    CO2         (1) 

H2 + ½ O2    H2O         (2) 

 

In addition to the size of the gold particles, the catalytic activity of supported gold catalysts is 

recognized to be dependent on the support [11]. Since TiO2 is almost inert as a catalyst for CO 

oxidation as is bulk gold, the Au-TiO2 system can be regarded as the most clear-cut example for 

investigating the significant synergistic effect between gold and the metal oxide support [12]. 

Many studies have demonstrated the remarkable catalytic properties of gold nanoparticles 

supported on TiO2 particles for selective CO oxidation in H2-rich streams [13-18]. Moreover, it 

has been addressed that Polyaniline (PANI) assembled Au/TiO2 catalyst (Au/TiO2–PANI) and 

TiO2– alkaline earth metal oxide (AEMO) supported Au catalysts exhibited higher catalytic 

activity for oxidizing CO at room temperature than TiO2-supported Au catalyst because the 

PANI and AEMO modified TiO2 supports significantly affected the Au-support interactions by 

changing the surface electronic properties of the support [].  

Oxide-supported gold nanoparticles have been pointed as highly active and selective for 

preferentially eliminate carbon monoxide in H2-rich environments at temperatures similar to 

those of the fuel cell (PEM-type, around 80°C) [4]. In this way, the integration of the PrOx 

reactor and the fuel cell into the same cooling circuit becomes straightforward. This represents a 

clear advantage over the classic PrOx reactors based on Pt catalysts, whose optimum operation 
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temperatures of around 200°C lays in between the temperature of the reactor upwards (usually 

shift reactors at ca. 400°C) and the fuel cell.  

In addition to a highly selective catalyst, reactor design and determination of operation 

conditions are critical aspects that have to be addressed. Research is also concerned with 

applying and evaluating non-conventional reactors such as microreactors and monolith reactors 

[5]. However, studies on structured catalyst for this reaction are scarcer and even more those 

studies restricted to cordierite monolithic catalysts [xx-xx] 

Reaction rates adequately representing both competing oxidation reactions appear mandatory 

towards the implementation of a mathematical model of the PrOx reactor. There are many papers 

that report rate expressions for CO oxidation for different catalytic systems as Pt/γ-Al2O3 [6-8], 

Cu-CeO [9], Au/TiO2 [10, 11]. However, only few works consider H2 oxidation simultaneously 

with CO oxidation [12]. Even fewer rate expressions for both competitive reactions, i.e., H2 

oxidation and CO oxidation over Au-based catalysts can be found in literature. Kahlich et al. [4] 

concluded that the kinetics of selective CO oxidation over Au-αFe2O3 can be expressed by a 

power law functionality and that the reaction rates of CO and H2 oxidations are not interrelated. 

López et al. [13] proposed power law expressions for CO and H2 oxidation whose kinetic 

parameters were fitted from experiences carried out in an isothermal flat-bed reactor filled with 

Au/α-Fe2O3-γ-Al2O3 pellets. Laguna et al. [14] carried out a kinetic study for the CO-PrOx 

reaction over AuCeCu and CeCu catalysts. To estimate the parameters of a Langmuir-

Hinshelwood type expression for CO oxidation and a power–law type expression in the case of 

H2 oxidation, a series of experiments were performed in a micro-packed bed.  

There exist a variety of numerical optimization methods to solve the estimation problem 

related to the unknown parameters of the rate expressions. These techniques have been grouped 
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in deterministic and stochastic ones depending whether they use derivative information or not. 

Among the stochastic approaches, the Genetic Algorithm (GA) is one of the most popular 

because this optimization technique tends to find the global optimum solution without becoming 

stuck at local minima [15]. Several authors have resorted to GAs for tackling the parameter 

estimation problem [16-18]. 

Parameter uncertainty leading to inaccurate predictions is often present when kinetic models 

with nonlinear rate equations are considered. In nonlinear estimation problems, after a solution 

has been found, an assessment of the parameter values should be performed in order to estimate 

their uncertainties in rigorous statistical terms [19], including the estimation of the confidence 

intervals, the joint confidence region, and the correlations between the fitted parameters.  

This work aims at evaluating the performance of the gold-based structured catalyst on the CO-

PrOx reaction. The kinetic parameters of an empirical nonlinear model were estimated using a 

GA technique. For making the model calibration, we use our own experimental observations in a 

lab scale unit and under a well-defined range of operating conditions of practical interest. 

Furthermore, in order to assess the quality of the kinetic parameters obtained from the fitting, an 

identifiability analysis has been performed. 

 

2. Experimental  

 

2.1. Catalyst preparation and characterization 

Two types of conventional cordierite monoliths were chosen as support for the gold-based 

catalyst. First and aiming the generation of kinetic data over which the parameter estimation is 

based, we prepared two cylindrical pieces with square cross-section of side ca. 0.5 mm (900 
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cpsi), having 1.4 cm of length and 1.4 cm of diameter each. A homogeneous TiO2 layer was 

deposited over the monolith walls using titanium isopropoxide (Panreac) as precursor. The 

samples were dried under continuous rotation for 1h at 353 K and then calcined at 723 K for 4 h 

(1 K min-1). Pre-formed gold nanoparticles, obtained by the two phase transfer method [20], 

were grafted afterwards onto the TiO2 support (2% w/w) by calcination at 673 K for 2 h (2 K 

min-1) [21]. Additionally, an extra cordierite monolithic sample was functionalized with the same 

method aforementioned to perform experiences to validate the kinetics obtained after the fitting 

procedure. This last monolith comprises 400 cpsi (square channels of 1 mm side) and measures 2 

cm length and 2 cm diameter. Before experiences, samples were activated under reaction mixture 

at 473 K for 2 h. Detailed characterization results of the prepared catalysts have been already 

reported by the authors in a previous paper [21]. Here, we characterized the catalytic monoliths 

with scanning electron microscopy (SEM) and high-resolution transmission electron microscopy 

(HRTEM) to study the morphology and structure of the catalytic layer. SEM was conducted with 

a Zeiss Neon40Crossbeam Station equipped with a field emission electron source and HRTEM 

was carried out with a JEOL 2010 instrument at 200 kV.  

 

2.2. Reaction set-up 

CO preferential oxidation experiences were conducted in a conventional lab facility, as shown 

in Figure 1. The two functionalized monolithic samples 1.4×1.4 cm length and diameter were 

sealed into a stainless steel housing. The reactor was disposed inside an electric furnace 

(Heraheus) governed with a PID electronic controller (Novus 480D). A K-type thermocouple 

was additionally used to register the reactor temperature. The feed process stream to the reactor 

resembled the composition exiting a shift reactor (dry mixture, 1.41% CO, 24.33% CO2, balance 
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H2). Air is used to provide the required oxygen. Both gas streams were dosed by using two 

independent mass flow controllers (Brooks). Exit compositions of reactants, products, and inerts 

(CO, CO2, H2, O2 and N2) were quantified by GC (HP 4890, Molsieve 5Å and Porapak-Q packed 

columns, TCD detector). To close element balances, the total volumetric flowrate of the outlet 

gas stream was measured (bubble soap meter). Water condensed from the reactor (formed by the 

undesired hydrogen oxidation) was collected in an appropriate vessel. 

 

Figure 1. Experimental set-up. 

2.3. Operating conditions and performance parameters 

The lab facility presented in Figure 1 allowed steady-state measurements of the catalyst 

performance under isothermal/isobaric conditions; other operations variables can be found in   

Table 1. A constant pressure of 1.2 bar (absolute) was adopted for all tests, in accordance to the 

operation conditions of a PEM type fuel cell. 2-4 replica of each measurement showed 

appropriate reproducibility. 48 different experiences were performed, amounting 192 
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experimental observations (as molar flowrates of CO, CO2, H2, and O2 leaving the reactor) to be 

employed in the model calibration. By closing element balances, water contents were calculated 

in the reactor exit. Catalyst showed no deactivation signs after ca. 45 h on stream. 

 

Table 1. Experimental conditions 

Temperature (K) 

Pressure (bar) 

Feed load (WHSV) (ml/gcat·min) 

Feed concentration (λ, Eq. 5) (molO2 / molCO)  

334 - 473 

1.2 

45 - 375 

0.4 (0.8) - 4.1 (8.2)   

 

To quantify the catalyst performance towards the CO-PrOx reaction, both the CO conversion 

(xCO) and the reaction selectivity (S) were calculated by using Eqs. (3) and (4). The reaction 

selectivity is calculated as the quotient of the oxygen flowrate used to only oxidize CO to CO2 

and the total oxygen consumption (i.e., oxidations of both CO and H2).  
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The parameter λ, as defined by Eq. (5), is commonly used in CO-PrOx to quantify the oxygen 

excess in feed, where λ = 1 is the stoichiometric relation to only oxidize the CO fed.  
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3. Theoretical framework 

 

3.1. The inverse problem & statistical evaluation  

The fitting procedure of the kinetic parameters is also referred as an inverse problem. Here, 

results arisen from a mathematical model expressed by a set of differential-algebraic equations 

(DAEs) are contrasted with experimental observations of the performance of the CO-PrOx 

reaction over the prepared monolithic catalyst [22]. The fitting problem can be mathematically 

expressed as:  

 

   *e*e
xxVxx(p)  1T

min J        (6a) 

s.t. 

),,,( z
dz

d
puxf

x
          (6b) 

  0puxh z,,,          (6c) 

  0
xx 0z ,            z[z0, zf]        (6d) 

UL
xxx            (6e) 

UL
ppp            (6f) 

where J(p) is the objective function to be minimized, p are the parameters (decision variables 

of the problem), xe are experimental measurements of differential state variables, x*are model 

predictions of those variables, V is a weighting matrix, u are the algebraic variables, z represents 

the axial coordinate, f are the differential constrains whereas h are the algebraic ones. 

As already referenced, a Genetic Algorithm (GA) method is adopted here towards the 

optimization problem at hand. The model (as described in Section 4) was implemented in the 

MATLAB 7.6.0 platform (The Mathworks, Inc.) and through the genetic algorithm option 
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available in the optimization tool of this software the parameter estimation was carried out. More 

information regarding the GA approach and its implementation and use, can be found elsewhere 

[19, 23, 24].  

In this contribution, once the parameters have been fitted by the GA, a statistical assessment of 

these estimates is performed to judge their reliability. Confidence intervals and confidence 

ellipsoids of p* in nonlinear models are obtained through an approximate covariance matrix 

expressed as [25]:  
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Here, J(p*) is the minimum value of the sum of the square errors calculated from the 

parameter estimation problem Eqs. (6) and )(p*
x

p


represents a sensitivity matrix of model 

variables x with respect to the parameter estimations. Also, quantities NE and np are the number 

of experiments and adjusted parameters, respectively.  

Using the C(p*) matrix, computed via the Fisher Information Matrix, the approximate 

confidence intervals in p space can be determined by Eq. (8) [26, 27]. 
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where 




1

npNEnp
F ,  is the value from the F distribution with (NE - np) degrees of freedom and (1 – 

 ) represents a given confidence level.  

The confidence interval of each parameter m, m, is quantified by: 
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mmnNEm Ct
p

)2/(1  

          (9) 

 

where 
)/( 21 

 pnNE
t is the t-distribution value corresponding to the (α/2) percentile and Cmm are the 

elements in the main diagonal of matrix C(p*). 

The approximate correlation coefficients between two estimated parameters (Qml) indicate the 

strength of their correlation. Therefore, Qml = 0 indicates no correlation at all between fitted 

parameters, on the other hand Qml = 1 means unidentifiable parameters. Individual coefficients 

Qml are calculated here using the following equation: 
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3.2. Model formulation 

A 1-D pseudo-homogeneous mathematical model was implemented to represent the steady-

state operation of the Au/TiO2 monolithic catalyst described in previous sections. Isothermal and 

isobaric operation was assumed. This model was profited in the kinetic parameter fitting 

procedure. The following mass balance equations were considered for each specie j present in 

the reaction medium: 
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In Eq. (11), Fj is the molar flowrate of component j (mmol min-1), AT represents the cross 

sectional area of monolith (m2), B is the catalyst loading (gcat m-3), vij is the stoichiometric 

coefficient of component j in reaction i, and ri is the reaction rate of i (mmol gcat
-1 min-1). 

Reaction rates for CO and H2 oxidations (Eqs. (1)-(2)) are represented here by power-law type 

expressions:  
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where pj are partial pressures of species j (bar), nj are the reaction orders, 
0

ik  is the pre-

exponential constant (mmol gcat
-1 min-1 bar-n), Ei is the activation energy (kJ mol-1), R being the 

universal gas constant (8.3144 × 10-3 kJ mol-1 K-1), and T represents the temperature (K). 

Partial pressures pj and molar flowrates Fj are related via Eq. (15) where P represents the total 

pressure (bar). 
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It´s well known that external and/or internal mass transfer phenomena can play an important 

role in the observed reaction rate [28]. However, one of the great advantages on the using of 

microchannel reactors is based on the fact that only small temperature and concentration 
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gradients are to be expected [29]. Different criteria were applied in order to evaluate the absence 

of external and internal mass gradients affecting the estimation of reaction rates. In the case of 

CO-PrOx, two reactions are involved, i.e., oxidations of CO and hydrogen. It is common practice 

to select the fastest reaction under the system conditions to evaluate the mentioned criteria [30, 

31]. 

The Weisz - Prater criterion can be selected to asses if internal mass transport limitations affect 

the reaction rate of an irreversible reaction. The Weisz - Prater criterion adapted for the geometry 

of a flat catalyst layer was applied here [32]. In the present case, the thin porous TiO2 catalyst 

layer (ca. 80 nm [21]) deposited over the monoliths walls leads to comfortably fulfillment of the 

Weisz-Prater criterion allowing to conclude that intraparticle mass resistances can be neglected.  

Although most commonly the principal mass transfer resistance occurs inside the particle [31], 

a modified Mears criterion to wall coated microreactors was applied here to evaluate the 

contribution of external mass transfer resistances [29]. For the operating and geometrical 

conditions selected in this study, the Mears criterion allowed us to neglect the explicit evaluation 

(i.e., the use of a heterogeneous model) of the mass transfer phenomenon in the boundary layer, 

even under conditions of maximum conversion.   

The objective function minimized along the fitting procedure was: 
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where Fej and Fej* are the experimental and calculated exit molar flowrates of component j in 

the experiment e, respectively. NE represents the number of experiments (NE = 192) and NC the 
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total number of components considered (NC = 5). In Eq. (16), max(Fej)
-2 corresponds to weights 

used for normalizing the contribution of each term. 

To sum up, the fitting problem addressed in this work corresponds to a DAE system composed 

by 5 differential equations (Eq. (11)) and 2 algebraic equations (Eqs. (12) - (13)). In this way, the 

problem considers 5 state variables and 8 parameters (k0’s, E’s, and n’s) to be fitted.   

 

4. Results and discussions 

 

4.1 Catalytic monolith characterization 

The catalytic layer deposited onto the monolith walls was characterized by electron 

microscopy (Figure 2). As evidenced by SEM, the deposition of the TiO2 catalyst support formed 

a homogeneous layer of about 30 m in thickness over the monolith walls (Figure 2b). SEM 

images also showed the porous structure of the monoliths. The structure of the Au/TiO2 catalytic 

layer was characterized in detail by HRTEM. Nanometer-sized Au nanoparticles were identified 

over the TiO2 support and were well-distributed. As a representative example, in Figure 2c lattice 

fringes corresponding to TiO2 in its anatase polymorph were identified at 3.52 Å, which are 

ascribed to the characteristic (101) crystallographic planes (see the corresponding Fourier 

Transform image in the inset). Also, an individual Au nanoparticle was identified, which was 

oriented along the [100] crystallographic direction. Spots at 2.04 Å in the corresponding Fourier 

Transform image corresponded well to the (200) planes of metallic Au. Therefore, we conclude 

that the monoliths were successfully coated with an homogeneous layer of Au/TiO2 catalyst, 

with Au nanoparticles well distributed over anatase, as expected. 
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Figure 2. (a) Photograh of the 400 cpsi monolith used coated with Au/TiO2 catalyst. (b) SEM 

image of a cross section of a polished monolith wall showing the porous structure of the 

cordierite support and the catalytic layer. (c) HRTEM image of the Au/TiO2 catalyst. 

 

4.2 Parameter estimation and identifiability analysis 

This section is devoted to the study, by means of a statistical evaluation, of the goodness of the 

fitting procedure via a reliable identification of the adjusted kinetic parameters in Eqs. (12)-(14). 

As stated before, the nonlinear problem was implemented and solved using GA in the MATLAB 

software. For the algorithm, the stopping criterion considered here was a maximum number of 

generations of 100 or a cumulative change in the objective function value less than 1 10-9 over 

50 stall generations, whichever occurs first. 

Table 2 reports the fitted values of the kinetic parameters along with their correspondent 95% 

confidence intervals (CI) which quantify the uncertainty of the individual fittings. Table 2 also 

shows the correlation matrix where only the 10  10 lower triangular matrix is displayed. Bold 

values indicate the few pronounced correlations between pairs of parameters (values > 0.7).  
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Table 2. Estimated kinetic parameters, 95% confidence intervals (CI), and correlation 

coefficients. 

p Value 95% CI Correlation matrix 

   

1k  E1 

2k  E2 n1 n2 n3 n4 



1k  4.36107 ±3.25107 1.00        

E1 29.24 ±0.98 0.79 1.00       



2k  3.64108 ±6.88107 0.44 0.70 1.00      

E2 55.42 ±0.39 0.47 0.77 0.94 1.00     

n1 1.30 ±0.08 0.89 0.45 0.12 0.14 1.00    

n2 1.13 ±0.04 0.87 0.55 0.31 0.30 0.76 1.00   

n3 1.20 ±0.08 0.34 0.45 0.82 0.63 0.18 0.19 1.00  

n4 0.70 ±0.01 0.22 0.40 0.83 0.62 -0.04 0.29 0.79 1.00 

 

Parameter estimations have narrow confidence intervals indicating sufficient ammount of 

experimental observations. These narrow confidence bands reduce parameters uncertainty. The 

normalized covariance matrix presented in Table 2 posseses many weakly correlated parameters 

which can therefore be simultaneously estimated by least square optimization.  

Fitted values for the activation energies of both competing reactions agree well with reports in 

the literature when the preferential oxidation of carbon monoxide in hydrogen-rich environments 

conducted over Au/TiO2 catalysts is considered [28, 14]. A fitted E1 of ca. 30 kJ/mol points the 

superior performance of nanosized gold towards CO oxidation at reduced temperatures. 

Moreover, the difference between the achieved values of E1 and E2 (E1 < E2) confirms 

experimental observations regarding selectivity losses as T increases. This fact should be on the 

focus when the design of the CO-PrOx reactor is accomplished: the heat of reaction (both 
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oxidation reactions present elevated exothermicity) has to be efficiently removed from the 

reaction chamber to prevent undesired operation with reduced selectivity, which renders 

unconverted CO and excesive H2 losses. 

Parity plots reporting a comparison between experimental and simulated exit flowrates (all 

experiences) are depicted in Figure 3. As shown, not any systematic deviations are observed, 

with the points reasonably spread around the diagonal line. 
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Figure 3. Measured vs. calculated exit flowrates for each component considering the parameters 

reported in Table 2. 



 

18 

 

  

  

  

Figure 4. Ellipsoids considering 99, 95, and 90% confidence levels. The symbol (+) indicates the 

parameter values obtained by the optimization algorithm. 
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Figure 4 presents confidence regions corresponding to 99, 95 and 90% confidence levels for 

selected pairs of estimated parameters as a picture of the quality of the fitting performed. The 

narrow shapes of the ellipses indicate a reliable estimation of the parameters.   

 

4.3 Reaction performance 

The influence of different operating variables, i.e., oxygen excess (λ), total inlet flowrate (FTO) 

and temperature (T) on catalytic performance is analyzed in the present section. Additionally to 

the experimental results employed to fit the mathematical model, modelling results are also 

included in the following figures. The inlet reaction mixtures of the experiencies presented in 

this section consisted in 66% H2, 1.3% CO (13000 ppm), 1-4.5% O2, 21% CO2 and the 

corresponding N2 of the air in feed (ca. 8%). 

Figure 5 illustrates the behavior of reactants and products outlet flowrates for different λ 

values. Figure 5a shows that as λ is increased, more CO is converted and consequently lower CO 

outlet flowrates and higher CO2 amounts are obtained, with a constant CO feed flowrate, which 

is represented in Figure 5a with a dashed line. However, the increased O2 available in the 

reaction mixture promotes undesired H2 consumptions in the monolith. This O2 surplus in the 

reactor entrance is also evidenced as higher amounts of unconverted O2 leaves the reactor. 

Although a temperature as low as 363 K was selected for experiences in Figure 5, a maximum 

CO conversion of 60% was achieved reflecting an enhanced ability of the Au-TiO2 

functionalized monoliths to conduct the CO-PrOx reaction in a hydrogen-rich environment. It is 

also worth mentioning that model results satisfactorily reproduce experimental measurements.  
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Figure 5. Influence of λ over (a,b) reactants and (c,d) products outlet flowrates: ■ experimental 

and □ model results. T = 363 K, WHSV = 174 - 206 (ml/gcat min) Fig. 4a: (----) Inlet CO molar 

flowrate. 

 

Figure 6 reports results of the influence of λ on the catalytic performance. As previously 

observed for Figure 5, as λ is increased more O2 is available to oxidize the CO and, 

consequently, CO conversion increases. Therefore, selectivity to CO2 drops as λ shifts from 3 to 

6.5 as a consequence of lower mean CO concentrations along the reactor. This effect is in 

accordance with the adjusted kinetic parameters. In fact, although adjusted reaction orders for 

CO and H2 (1.13 to 0.7, respectively) would indicate an increase in the ratio between CO and H2 

oxidation rates as oxygen partial pressures augments, the CO depletion effect at almost constant 

H2 partial pressure (due to the huge H2 excess) impact in a definitive way over the observed 

selectivity. It should be noted a reduced SCO2 value for λ = 1.5 as O2 was depleted here within the 
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reactor. CO conversions of ca. 80% were achieved here operating at a temperature level 20K 

higher than the experiences presented in Figure 5. 

It is worth remarking that the influence of the reverse or direct water-gas shift reaction should 

be neglected here due to the low operation temperatures at hand. 
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Figure 6. Influence of λ over (a) CO2 selectivity (SCO2) and (b) CO conversion (xCO): 

■experimental and □ model results. T = 383 K, WHSV = 178 – 206 (ml/gcat min). 

 

Results regarding CO2 selectivity and CO conversion are presented as affected by the feed 

flowrate in Figure 7. As expected, WHSV increases implying reduced residence times lead to 

lower CO conversions. Again, higher mean CO molar fractions along the reactor are associated 

with higher observed selectivity values.  
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Figure 7. (a) CO2 selectivity (SCO2) and (b) CO conversion (XCO) as a function of WHSV: 

■experimental and □ model results. T = 363 K, λ = 3.  

 

The effect of the operating temperature over both CO conversion and CO2 selectivity is 

adressed in Figure 8. As shown in this figure, CO conversion does not present a monotonous 

behavior with temperature. In fact, temperature increments from low values lead to an increase in 

conversion based on kinetic reasons, achieving a high conversion value of 79% at T = 383 K. On 

the other hand, as temperature increases further (T  383 K in this case) the selectivity 

deteriorates in such an extent and the O2 is preferentially consumed by the non-desired H2 

oxidation, rendering enhanced amounts of unconverted CO. This behavior obeys to the fact that 

the activation energy of H2 oxidation is higher than that of the CO oxidation, as reported 

elsewhere for CO-PrOx over gold-based catalysts [14].  

It is important to remark that model results satisfactorily reproduces the experimental results 

presented in this section.  
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Figure 8. Temperature effect over (a) CO2 selectivity (SCO2) and (b) CO conversion (XCO). 

■experimental and □ model results. λ = 5, WHSV = 197 (ml/gcat min) 

 

4.4 Model validation 

The adequacy of the calibrated model is assessed by confronting its predictions with 

experimental data not used to estimate the parameters of the model. Experiences presented here 

were performed with the same Au/TiO2 catalyst studied in Section 4.3 (900 cpsi monoliths) but 

now washcoated over 400 cpsi cordierite monoliths (see Section 2.1). Additionally, some 

differences in the reactor feed were selected as no CO2 was included and pure O2 instead of air 

was used (now N2 acts as balance). The influence of λ, feed load, and operating temperature on 

both observed and calculated exit CO flowrates is presented in Figures 8, 9, and 10, respectively. 

These figures show that exit CO flowrates follow similar trends with operational variables as 

those already discussed in Section 4.3. It could be remarked here that CO conversion levels of 

maximum 93% in Figure 9a and of 85% for optimum temperatures in Figure 11a were achieved.  
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Figure 9. Influence of λ over (■) experimental and (□) calculated exit CO (a) and H2 (b) molar 

flowrates, (----) represents inlet CO molar flowrates. T = 363 K. Feed mixture: 50 % H2, 2% CO 

(20000 ppm), 2-6% O2, and N2 as balance.   
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Figure 10. Influence of the feed load over (■) experimental and (□) calculated exit CO (a) and 

H2 (b) molar flowrates.  (----) represents inlet CO molar flowrates.  T = 363 K, λ = 2.  Feed 

mixture: 50 % H2, 2% CO (20000 ppm), 2% O2, and N2 as balance. 
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Figure 11. Temperature effect over (■) experimental and (□) calculated exit CO (a, c) and H2  

(b, d) molar flowrates. (----)  Inlet flowrates.  Feed mixture:  50 % H2, 2% CO (20000 ppm), 2% 

O2, and N2 as balance.   (a, b):  λ = 4,  WHSV  = 45 (ml/gcat min).  (c, d):  λ = 2.7,   WHSV= 498 

(ml/gcat min) 

 

On the other hand, and in spite of the usage of feed loads of ca. one order of magnitude higher 

and lower values of λ, CO conversions of 60% are achieved as presented in Figure 11c. 

Additionally, good predictions of the H2 exit flowrates were possible. Summing up, and based on 

the comparison between model results and the experimental data presented in Figures 8-10, it 
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can be concluded that the fitted power-law type kinetic model proved succesfull in predicting the 

performance of gold/titania catalysts on the CO preferential oxidation in H2-rich environements 

under operating conditions of practical interest. 

 

5. Conclusions 

 

The present contribution reports the estimation of kinetic parameters considering a power law–

type reaction rate expression to describe lab experiences for the CO preferential oxidation 

process over an Au/TiO2 structured catalyst.  

The parameter estimation problem has been solved using Genetic Algorithms. The objective of 

the model is to minimize the weighted least squares. The estimates have been obtained using 

experimental results from our laboratory.  

In order to investigate the precision of the adjusted parameters, an identifiability analysis has 

been performed. The goodness of the model fits is quite remarkable considering the wide range 

of experimental conditions used, i.e., different oxygen excesses (λ), total inlet flowrates (FTO) 

and temperatures (T). Activation energies of ca. 30 kJ/mol and 55 kJ/mol were adjusted for CO 

and H2 oxidations, respectively. The catalyst showed an appropriate activity and selectivity 

values on the CO oxidation on a H2-rich environment. After ca. 45 h on-stream the catalyst 

showed no deactivation.  

Additionally, the adequacy of the calibrated model was assessed by confronting its predictions 

with experimental data not used for estimating the parameters of the model. It can therefore be 

concluded that the fitted power-law type kinetic model succesfully predicts the performance of 
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gold/titania catalysts on the CO preferential oxidation in H2-rich environements under operating 

conditions of practical interest and constitutes an usefull tool for CO-PrOx reactor designs.  
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NOMENCLATURE 

Subscripts 

e Experiment  

i Reaction  

j Component  

m Parameter 

Superscripts 

L Lower bound 

U Upper bound 

0 Inlet value 

Parameters 

AT Cross sectional area of monolith (m2) 

Fj Molar flowrate of component j (mmol min-1) 

ki Reaction rate constant for reaction i (min-1) 

0

ik  Frequency factor (mmol gcat
-1 min-1 bar-n) 

NE Number of experiments 

NC Number of components 

pj Pressure of component j (bar) 

P Total pressure (bar) 

ri Reaction rate  

R Universal gas constant (kJ mol-1 K-1) 

T Temperature (K) 

vij Stoichiometric coefficient of component j in reaction i 

yj Molar fraction of component j 

B Catalyst loading per unit monolith volume (gcat m
-3) 
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