1,049 research outputs found

    Transport coefficients in high temperature gauge theories: (II) Beyond leading log

    Get PDF
    Results are presented of a full leading-order evaluation of the shear viscosity, flavor diffusion constants, and electrical conductivity in high temperature QCD and QED. The presence of Coulomb logarithms associated with gauge interactions imply that the leading-order results for transport coefficients may themselves be expanded in an infinite series in powers of 1/log(1/g); the utility of this expansion is also examined. A next-to-leading-log approximation is found to approximate the full leading-order result quite well as long as the Debye mass is less than the temperature.Comment: 38 pages, 6 figure

    Thomson and Compton scattering with an intense laser pulse

    Full text link
    Our paper concerns the scattering of intense laser radiation on free electrons and it is focused on the relation between nonlinear Compton and nonlinear Thomson scattering. The analysis is performed for a laser field modeled by an ideal pulse with a finite duration, a fixed direction of propagation and indefinitely extended in the plane perpendicular to it. We derive the classical limit of the quantum spectral and angular distribution of the emitted radiation, for an arbitrary polarization of the laser pulse. We also rederive our result directly, in the framework of classical electrodynamics, obtaining, at the same time, the distribution for the emitted radiation with a well defined polarization. The results reduce to those established by Krafft et al. [Phys. Rev. E 72, 056502 (2005)] in the particular case of linear polarization of the pulse, orthogonal to the initial electron momentum. Conditions in which the differences between classical and quantum results are visible are discussed and illustrated by graphs

    Factors related to tinnitus and hyperacusis handicap in older people.

    Get PDF
    OBJECTIVE: The aim was to assess factors related to tinnitus and hyperacusis handicap in older people. DESIGN: Retrospective cross-sectional. STUDY SAMPLE: Data were gathered for 184 patients with an average age of 69 years. RESULTS: Tinnitus handicap as measured via the Tinnitus Handicap Inventory (THI) was significantly predicted by tinnitus annoyance as measured via the visual analogue scale (VAS) (regression coefficient, b = 2.9, p < 0.001) and the effect of tinnitus on the patient's life as measured via the VAS (b = 3.9, p < 0.001). Hyperacusis handicap as measured via the Hyperacusis Questionnaire (HQ) was significantly predicted by the score on the depression subscale of the Hospital Anxiety and Depression Scale (HADS) (b = 0.8, p < 0.001) and to a small extent by the THI score (b = 0.07, p = 0.048). Insomnia scores as measured via the Insomnia Severity Index (ISI) were significantly predicted by scores on the depression subscale of the HADS (b = 0.46, p = 0.007). CONCLUSIONS: Since tinnitus annoyance significantly predicts tinnitus handicap, it is important to explore factors associated with annoyance that may be useful in designing appropriate rehabilitative interventions aimed at reducing tinnitus handicap in older people. Future studies should explore whether hyperacusis and insomnia in older people with tinnitus need to be managed in conjunction with treatment for depression

    Formation of Small-Scale Condensations in the Molecular Clouds via Thermal Instability

    Full text link
    A systematic study of the linear thermal instability of a self-gravitating magnetic molecular cloud is carried out for the case when the unperturbed background is subject to local expansion or contraction. We consider the ambipolar diffusion, or ion-neutral friction on the perturbed states. In this way, we obtain a non-dimensional characteristic equation that reduces to the prior characteristic equation in the non-gravitating stationary background. By parametric manipulation of this characteristic equation, we conclude that there are, not only oblate condensation forming solutions, but also prolate solutions according to local expansion or contraction of the background. We obtain the conditions for existence of the Field lengths that thermal instability in the molecular clouds can occur. If these conditions establish, small-scale condensations in the form of spherical, oblate, or prolate may be produced via thermal instability.Comment: 16 page, accepted by Ap&S

    Gravitational corrections in supersymmetric gauge theory and matrix models

    Get PDF
    Gravitational corrections in N=1 and N=2 supersymmetric gauge theories are obtained from topological string amplitudes. We show how they are recovered in matrix model computations. This provides a test of the proposal by Dijkgraaf and Vafa beyond the planar limit. Both, matrix model and topological string theory, are used to check a conjecture of Nekrasov concerning these gravitational couplings in Seiberg-Witten theory. Our analysis is performed for those gauge theories which are related to the cubic matrix model, i.e. pure SU(2) Seiberg-Witten theory and N=2 U(N) SYM broken to N=1 via a cubic superpotential. We outline the computation of the topological amplitudes for the local Calabi-Yau manifolds which are relevant for these two cases.Comment: 27 pages, one eps figur

    Holomorphic Anomaly in Gauge Theories and Matrix Models

    Full text link
    We use the holomorphic anomaly equation to solve the gravitational corrections to Seiberg-Witten theory and a two-cut matrix model, which is related by the Dijkgraaf-Vafa conjecture to the topological B-model on a local Calabi-Yau manifold. In both cases we construct propagators that give a recursive solution in the genus modulo a holomorphic ambiguity. In the case of Seiberg-Witten theory the gravitational corrections can be expressed in closed form as quasimodular functions of Gamma(2). In the matrix model we fix the holomorphic ambiguity up to genus two. The latter result establishes the Dijkgraaf-Vafa conjecture at that genus and yields a new method for solving the matrix model at fixed genus in closed form in terms of generalized hypergeometric functions.Comment: 34 pages, 2 eps figures, expansion at the monopole point corrected and interpreted, and references adde

    Solar Wakes of Dark Matter Flows

    Get PDF
    We analyze the effect of the Sun's gravitational field on a flow of cold dark matter (CDM) through the solar system in the limit where the velocity dispersion of the flow vanishes. The exact density and velocity distributions are derived in the case where the Sun is a point mass. The results are extended to the more realistic case where the Sun has a finite size spherically symmetric mass distribution. We find that regions of infinite density, called caustics, appear. One such region is a line caustic on the axis of symmetry, downstream from the Sun, where the flow trajectories cross. Another is a cone-shaped caustic surface near the trajectories of maximum scattering angle. The trajectories forming the conical caustic pass through the Sun's interior and probe the solar mass distribution, raising the possibility that the solar mass distribution may some day be measured by a dark matter detector on Earth. We generalize our results to the case of flows with continuous velocity distributions, such as that predicted by the isothermal model of the Milky Way halo.Comment: 30 pages, 8 figure

    Femtosecond gas-phase mega-electron-volt ultrafast electron diffraction

    Get PDF
    The development of ultrafast gas electron diffraction with nonrelativistic electrons has enabled the determination of molecular structures with atomic spatial resolution. It has, however, been challenging to break the picosecond temporal resolution barrier and achieve the goal that has long been envisioned - making space- and-time resolved molecular movies of chemical reaction in the gas-phase. Recently, an ultrafast electron diffraction (UED) apparatus using mega-electron-volt (MeV) electrons was developed at the SLAC National Accelerator Laboratory for imaging ultrafast structural dynamics of molecules in the gas phase. The SLAC gas-phase MeV UED has achieved 65 fs root mean square temporal resolution, 0.63 Ă… spatial resolution, and 0.22 Ă…-1 reciprocal-space resolution. Such high spatial-temporal resolution has enabled the capturing of real-time molecular movies of fundamental photochemical mechanisms, such as chemical bond breaking, ring opening, and a nuclear wave packet crossing a conical intersection. In this paper, the design that enables the high spatial-temporal resolution of the SLAC gas phase MeV UED is presented. The compact design of the differential pump section of the SLAC gas phase MeV UED realized five orders-of-magnitude vacuum isolation between the electron source and gas sample chamber. The spatial resolution, temporal resolution, and long-term stability of the apparatus are systematically characterized

    Setdb1-mediated H3K9 methylation is enriched on the inactive X and plays a role in its epigenetic silencing

    Get PDF
    Background: The presence of histone 3 lysine 9 (H3K9) methylation on the mouse inactive X chromosome has been controversial over the last 15 years, and the functional role of H3K9 methylation in X chromosome inactivation in any species has remained largely unexplored. Results: Here we report the first genomic analysis of H3K9 di- and tri-methylation on the inactive X: we find they are enriched at the intergenic, gene poor regions of the inactive X, interspersed between H3K27 tri-methylation domains found in the gene dense regions. Although H3K9 methylation is predominantly non-genic, we find that depletion of H3K9 methylation via depletion of H3K9 methyltransferase Set domain bifurcated 1 (Setdb1) during the establishment of X inactivation, results in failure of silencing for around 150 genes on the inactive X. By contrast, we find a very minor role for Setdb1-mediated H3K9 methylation once X inactivation is fully established. In addition to failed gene silencing, we observed a specific failure to silence X-linked long-terminal repeat class repetitive elements. Conclusions: Here we have shown that H3K9 methylation clearly marks the murine inactive X chromosome. The role of this mark is most apparent during the establishment phase of gene silencing, with a more muted effect on maintenance of the silent state. Based on our data, we hypothesise that Setdb1-mediated H3K9 methylation plays a role in epigenetic silencing of the inactive X via silencing of the repeats, which itself facilitates gene silencing through alterations to the conformation of the whole inactive X chromosome.Andrew Keniry, Linden J. Gearing, Natasha Jansz, Joy Liu, Aliaksei Z. Holik, Peter F. Hickey, Sarah A. Kinkel, Darcy L. Moore, Kelsey Breslin, Kelan Chen, Ruijie Liu, Catherine Phillips, Miha Pakusch, Christine Biben, Julie M. Sheridan, Benjamin T. Kile, Catherine Carmichael, Matthew E. Ritchie, Douglas J. Hilton and Marnie E. Blewit
    • …
    corecore