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ABSTRACT

The development of ultrafast gas electron diffraction with nonrelativistic electrons has enabled the determination of molecular structures
with atomic spatial resolution. It has, however, been challenging to break the picosecond temporal resolution barrier and achieve the goal
that has long been envisioned—making space- and-time resolved molecular movies of chemical reaction in the gas-phase. Recently, an ultra-
fast electron diffraction (UED) apparatus using mega-electron-volt (MeV) electrons was developed at the SLAC National Accelerator
Laboratory for imaging ultrafast structural dynamics of molecules in the gas phase. The SLAC gas-phase MeV UED has achieved 65 fs root
mean square temporal resolution, 0.63 Å spatial resolution, and 0.22 Å�1 reciprocal-space resolution. Such high spatial-temporal resolution
has enabled the capturing of real-time molecular movies of fundamental photochemical mechanisms, such as chemical bond breaking, ring
opening, and a nuclear wave packet crossing a conical intersection. In this paper, the design that enables the high spatial-temporal resolution
of the SLAC gas phase MeV UED is presented. The compact design of the differential pump section of the SLAC gas phase MeV UED
realized five orders-of-magnitude vacuum isolation between the electron source and gas sample chamber. The spatial resolution, temporal
resolution, and long-term stability of the apparatus are systematically characterized.

VC 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5120864

I. INTRODUCTION

The study of the photoinduced dynamics of small isolated mole-
cules is of crucial importance to the understanding of structure-
function relationships in nature.1,2 Given adequate temporal and spatial
resolutions, the imaging of structural changes following photoexcitation
can provide a glimpse into the mechanisms governing the conversion
of light into chemical and mechanical energy. Ultrafast diffraction tech-
niques use probes with a short wavelength (�1 Å) and short pulse
duration (�100 fs) to access structural information on the relevant spa-
tial and temporal scales. The most powerful probes for ultrafast diffrac-
tion are X-rays and electrons.3,4 The advent of X-ray free-electron
lasers (XFELs)5–7 has enabled time-resolved X-ray diffraction of gas-
phase targets with Angstrom-level spatial resolution and sub-100 fs

temporal resolution.8–10 Electron diffraction has been shown to be
well-suited to the study of structural dynamics in the gas phase with
sub-Å spatial resolution because of the large scattering cross section
and the short de Broglie wavelength of the electrons.11 Since the first
reported gas electron diffraction (GED) experiments, GED has become
a standard technique for determination of the time-averaged structures
of molecules in the gas phase.12,13 By implementing pulsed electron
sources, time-resolved GED was able to structurally resolve the nano-
second dynamics of long-lived photofragments.14,15 The advent of
commercial femtosecond lasers and developments in pulsed photo-
electron sources allowed the pioneering work of Zewail and Weber to
bring GED into the picosecond domain, establishing the field of ultra-
fast gas electron diffraction (UGED). Despite the remarkable scientific

Struct. Dyn. 6, 054305 (2019); doi: 10.1063/1.5120864 6, 054305-1

VC Author(s) 2019

Structural Dynamics ARTICLE scitation.org/journal/sdy

https://doi.org/10.1063/1.5120864
https://doi.org/10.1063/1.5120864
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5120864
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5120864&domain=pdf&date_stamp=2019-10-15
https://orcid.org/0000-0003-0670-6023
https://orcid.org/0000-0003-2692-6461
https://orcid.org/0000-0002-0641-1279
mailto:xshen@slac.stanford.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.5120864
https://scitation.org/journal/sdy


impact of its contribution on the study of transient structures,16,17 early
UGED experiments were unable to achieve subpicosecond temporal
resolution.18–23 However, a resolution in the order of 100 fs or even less
is needed to capture relevant nuclear motion in many photoinduced
processes. Reaching �100 fs time resolution using electrons at kilo-
electron-volt (keV) energies remains a challenge, even in the modern
UGED apparatus.

The temporal resolution, or instrument response function, of a
UGED experiment, in which a gas sample is excited (pumped) by a
laser pulse and probed by an electron bunch, is given by

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2L þ s2e þ s2VM þ s2VOA

q
; (1)

where sL is the pump laser pulse duration, se is the probe electron bunch
length, sVM is the velocity mismatch between the laser pulse and the elec-
tron bunch,24 and sTOA is the time-of-arrival (TOA) jitter between the
pump laser and the probe electron bunch. In most cases, the temporal
resolution of UGED is not limited by the pump pulse, sL, since sub-50 fs
laser systems are commercially available. The electron bunch length, se,
is determined by the initial energy spread in the electron bunch and the
space-charge induced pulse broadening during propagation, which often
results in a temporal resolution of several hundred femtoseconds.
Temporal resolution in the order of hundred femtoseconds has been
demonstrated in keV UED experiments on solid-state samples using
compact direct-current electron guns with the distance between the gun
cathode and the sample in the order of 1 cm and a limited number of
electrons per bunch.25–27 However, the use of compact electron guns in
UGED is technically difficult as electron sources require an ultrahigh
vacuum (�10�10Torr) to avoid the electrical breakdown, while the pres-
sure at the gas-sample chamber can easily exceed 10�5 Torr.

An alternative approach to obtain short electron bunches
involves the use of a radio frequency (RF) cavity to temporally com-
press the electron bunch at the sample.28,29 Time-stamping30 and a
sophisticated laser-rf synchronization31 have been used to minimize
the TOA jitter associated with RF compression. Some keV UGED
apparatus fitted with RF compression have demonstrated �500 fs
temporal resolution.32 The temporal resolution of UGED experiments
using keV (subrelativistic) electrons is dominated by the velocity mis-
match between the pump laser and the probe electron, sVM, associated
with a typical gas target thickness much larger than a few micrometers.
For example, using a 100-keV electron beam traversing a 200-lm gas
jet collinearly to the laser pump beam, the velocity mismatch contribu-
tion to the temporal resolution is found to be 550 fs. To circumvent
this effect, laser pulse-front tilting can be used to compensate for the
pump-probe velocity mismatch with limited sucess.32–34

The use of mega-electron-volt (MeV) high-brightness electron
beams has been shown to significantly improve the temporal resolu-
tion of UGED.35,36 Space charge forces scale as 1/(b2c3), where
b ¼ v=c, v is the velocity of the charged particle, c is the speed of light,
and c ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
. As a result, the space-charge repulsion of an

electron beam with 3.7-MeV kinetic energy is a thousand times
smaller than that of its 100-keV counterpart. In UGED apparatus
using MeV electrons, the sample chamber can be moved away from
the electron gun without severely compromising the electron bunch
length. This added separation between the electron source and the tar-
get allow the implementation of more effective differential pumping
designs, discussed in Sec. II. Moreover, the relativistic nature of MeV

electrons almost eliminates the velocity mismatch. For example, in the
case of a 3.7-MeV electron bunch traversing a 200-lm gas sample coli-
nearly to a laser beam, sVM is less than 10 fs.

Decades of intensive research and development efforts have been
devoted to improving the performance of MeV electron sources,37–47

which has paved the way to the implementation of MeV ultrafast elec-
tron diffraction (MeV UED) for imaging ultrafast structural dynamics
of molecules in the gas phase.48 In this paper, we report on the experi-
mental demonstration of the SLAC gas-phase MeV UED apparatus
capable of 70 fs root mean square (rms), or 150 fs full-width-at-half-
maximum (FWHM), temporal resolution (instrument response func-
tion), 0.63 Å spatial resolution, and 0.22 Å�1 reciprocal-space resolu-
tion, which has enabled molecular movies, capturing the rotational
dynamics in N2,

49 vibrational dynamics in I2,
50 a nuclear wave packet

crossing a conical intersection in CF3I,
51 and ring-opening in 1,3-

Cyclohexadiene (CHD).52 The high resolution and sensitivity of the
SLAC gas-phase MeV UED apparatus has also enabled the identifica-
tion and study of ultrafast events with onsets separated by 70 fs.51,52 In
this paper, we present the SLAC gas-phase MeV UED apparatus, its
design layout, resolution, and stability characterization.

II. EXPERIMENTAL SETUP

The gas-phase MeV UED apparatus, schematically depicted in
Fig. 1, has been developed around the preexisting MeV UED beamline
housed in the Accelerator Structure Test Area (ASTA) at SLAC and
described elsewhere.46,47 The apparatus employs an S-band 1.6-cell
photocathode RF gun to produce high-brightness 3.7-MeV electron
beams.53 Downstream of the electron gun, a diagnostic cross contain-
ing a beam profile monitor, movable Faraday cup, andmotorized colli-
mator made of Tungsten with fixed-size apertures (100, 200, and 500-
lm diameter), allows accurate manipulation and measurement of the
beam parameters. Following a series of differential pumping sections
(a sectional view shown in the bottom right panel of Fig. 2), a microfo-
cusing solenoid provides additional control over the electron beam
focusing.47 A third differential pumping section, housing the pump
laser incoupling optics and fitted with a 30 L/s turbo pump, ensures
adequate vacuum isolation between the RF gun and the sample cham-
ber. In the case of sudden pressure spikes, two gate-valves with vac-
uum interlocks protect the electron gun from contamination. A
movable capillary (2mm inner diameter), protruding into the sample
chamber, ensures two orders-of-magnitude pressure difference
between the incoupling mirror and the sample chamber, thus prevent-
ing the contamination of the mirror surface by gas molecules. A sche-
matic representation of the incoupling mirror and differential capillary
assembly is shown in Fig. 3. Inside the sample chamber, a 3-
dimensional translation stage ensures accurate positioning of the gas
nozzle with respect to the pump-probe overlap region, referred to as
the interaction point. Samples can be delivered to the interaction point
using either a heated pulsed nozzle or a continuous flow cell, depend-
ing on the sample properties. Immediately underneath the interaction
point, a cold trap consisting of a series of staggered honeycomb struc-
tures is cryocooled to 70K to condense the exhausted sample, as
shown in Fig. 3. A vertically mounted 1000 l/s turbo pump maintains
the chamber vacuum below 5� 10�5Torr, while the three differential
pumping stages upstream ensure 5 orders-of-magnitude vacuum isola-
tion, keeping the RF gun vacuum at �4� 10�10Torr. The electron
detector system is located 3.2-m downstream of the sample chamber.
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The detector module, shown in the top right panel of Fig. 2, is com-
posed of a 4-cm-diameter phosphor screen positioned perpendicular
to the electron beam path and a high-reflectivity mirror oriented 45�

with respect to the phosphor screen. The phosphor screen is imaged
through a vacuum viewport onto an Andor iXon Ultra 888 electron-
multiplying charge-coupled device (EMCCD) camera using the mirror
and an out-of-vacuum 40-mm f/0.85 lens.54 To prevent sensor satura-
tion, a 2.9-mm-diameter hole at the center of the phosphor screen
allows the passage of the undiffracted electron beam with orders-of-
magnitude higher beam charge compared to the diffracted beams.
Correspondingly, a hole at the center of the mirror allows the undif-
fracted electron beam to pass to a downstream beam dump. The shape
of this hole was carefully designed to minimize the background associ-
ated with stray pump laser light. While a uniform hole allows stray
pump laser light going through the phosphor hole to reflect and scatter

within the hole and eventual hit the back of the phosphor, contribut-
ing to the diffraction pattern background; the smooth tapered hole
design here implemented, has been found to eliminate these reflections
and thus significantly reduce the pump-laser-induced background
signal.

The gas-phase MeV UED apparatus is driven by a Ti:Sapphire
laser system, producing 25-mJ, 50-fs laser pulses with a central wave-
length of 800nm at the repetition rate of 180Hz. This laser is split into
two parts: a 0.8-mJ branch is frequency tripled to 266 nm for electron
generation at the RF gun photocathode, while the remainder in a sec-
ond branch is reserved for the generation of pump wavelengths of 400
and 266nm through harmonic generation using b-barium borate crys-
tals, as well as tunable wavelengths in the visible and ultraviolet range
using an optical parametric amplifier and frequency mixing. A low-
level RF-laser timing system and a high stability RF power source

FIG. 1. Schematic of the gas-phase MeV
UED at SLAC.

FIG. 2. Cross-sectional view of the gas
chamber (top left), the invacuum electron
detector module (top right), and the differ-
ential pumping section (bottom right).
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regulate the rms pump-probe timing jitter to <50 fs.46 In the RF gun,
electron pulses with 10 fC bunch charge at 3.7MeV kinetic energy are
generated; a circular collimator with 200-lm diameter transmits the
core portion of the beam, with a reduced charge of 2 fC; finally, the
microfocusing solenoid focuses the electron beam to a 270-lm
FWHM spot size at the detector, which corresponds to 0.22 Å�1

reciprocal-space resolution with the underlying diffraction geometry.
At the interaction point, the FWHM electron bunch length is esti-
mated to be 150 fs (upper limit), and the FHWM beam size is mea-
sured as 200lm. These results, which will be described in Sec. III, are
in good agreement with beam dynamics simulations carried out using
General Particle Tracer,55 as shown in Fig. 4. Typical machine parame-
ters are summarized in Table I.

The experimental conditions and interaction point geometry of a
typical gas-phase MeV UED experiment are exemplified by the study
of the photodissociation dynamics of trifluoroiodomethane (CF3I)

51

illustrated in Fig. 5, where 266-nm pump laser pulses and 3.7-MeV
electron probe bunches copropagate with <2� angle through a gas jet

with a diameter of 300 lm. A motorized delay stage installed in the
pump laser optical path controls the relative time delay between the
pump laser and the probe electron pulses. Diffraction patterns at dif-
ferent pump-probe delays were acquired at the detector with momen-
tum transfer up to 12 Å�1.

III. APPARATUS RESOLUTION CHARACTERIZATION
A. Temporal resolution

The temporal resolution of the gas-phase MeV UED apparatus
was characterized using the ultrafast photodissociation dynamics of
CF3I.

51 Upon absorption of a 266nm photon, the C-I bond in CF3I is

FIG. 3. Photographs and computer-aided design (CAD) drawings of the incoupling
mirror, capillary assembly, interaction point, and cold-trap.

FIG. 4. Comparison of the simulated and measured electron beam spot size,
rFWHM, and the bunch length, sFWHM. The rectangles mark the positions of different
apparatus components.

TABLE I. Typical machine parameters for the gas-phase MeV UED apparatus.

Parameters Values

Repetition rate 180Hz
Vacuum at the rf gun � 4� 10�10 Torr
Vacuum at the sample chamber � 5� 10�5 Torr
Electron beam kinetic energy 3.7MeV
Electron beam charge from the rf gun 10 fC
Collimator (z ¼ 0.6 m) diameter 200 lm
At the gas target (z ¼ 1.4 m)

Collimated electron beam charge 2 fC
Electron bunch length (FWHM) <150 fs
Electron beam size (FWHM) 200 lm
Pump laser spot size (FWHM) 300 lm
Gas sample size (FWHM) 300 lm
Electron beam transverse pointing jitter (rms) <14 lm
Laser-electron time-zero fluctuation (rms) 21.5 fs

At the electron detector (z ¼ 4.6 m)
Electron beam size (FWHM) 270 lm
Reciprocal space resolution 0.22 Å–1

Spatial resolution 0.63 Å
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broken within 50 fs, resulting in the energetic ejection of a CF3
• frag-

ment. This ultrafast structural change was captured in a series of dif-
fraction patterns acquired as a function of the pump-probe delay time.
Following background subtraction, 2-dimensional diffraction patterns
were reduced to 1-dimensional modified scattering intensity curves,
through azimuthal averaging and normalization.48 Figure 6(a) shows
these modified scattering intensity curves as a function of pump-probe

delay time t and momentum transfer s ¼ 4p
k

� �
sinðh2Þ, where k is the de

Broglie wavelength of the electron and h is the scattering angle. The
onset and bleaching of features are clearly observed at time delays after
time-zero, i.e., the delay step in which the pump and probe beam
intersect the sample simultaneously. The temporal evolution in inten-
sities integrated over the s-range delimited by the two dash lines Fig.
6(a), is shown as red squares in Fig. 6(b). Without devolution of the
actual instrumental response and the molecular dynamics involved,
fitting this trace to a simple error function gives a FWHM of 1436 36
fs, indicating the upper limit of apparatus temporal resolution.

B. Spatial resolution

The spatial resolution in UGED is defined as the finest feature
resolved from diffraction data, which can be expressed as d ¼ 2p/smax,
where smax is the maximum momentum transfer resolved in the dif-
fraction pattern. Since the gas electron diffraction cross section
decreases rapidly with momentum transfer s, the spatial resolution is
limited by the signal-to-noise ratio (SNR) of the experimental data. The
experimental and simulated modified scattering intensity curves,
sM sð Þ; of the ground state CF3I (prior laser excitation) are shown in
Fig. 7(b), as the solid blue and dotted red curves, respectively.
Agreement between experimental and simulated sMðsÞ up to
s¼ 10 Å�1 demonstrated a spatial resolution of 0.63 Å. The experimen-
tal and simulated sMðsÞ curves can be Fourier-transformed into a pair
distribution function (PDF) g rð Þ ¼

Ð smax
0 sM sð Þsin srð Þexpð�ks2Þds,

where r is the radial distance in real space. The PDF shows peaks cen-
tered at the interatomic distances (or bond lengths) of the molecule, as
shown in Fig. 7(c). The spatial resolution d determines the minimum
width of each peaks retrieved in the PDF. However, the interatomic

FIG. 5. (a) Schematic of the interaction region in the gas-phase MeV UED sample
chamber. Gas-phase CF3I molecules from the gas nozzle form pulsed gas jet sam-
ples (green). An ultrafast 266 nm pump laser (purple) excites the CF3I molecules,
while a 3.7 MeV electron pulse (blue) probes the ultrafast structural dynamics from
the excited CF3I molecules. Diffraction patterns as a function of the time delay
between the pump laser and the probe electron pulses are captured on the electron
detector 3.2 m downstream of the interaction point. (b) A cartoon of the CF3I photo-
dissociation process.

FIG. 6. Temporal resolution characteriza-
tion by the time-resolved ultrafast CF3I
photodissociation dynamics. (a) The modi-
fied scattering intensity as a function of
momentum transfer s and pump-probe
time delay t. (b) The red squares show
the integrated intensities in the region
between the two dashed lines (between
s¼ 1.5 Å�1 and s¼ 2.2 Å�1) in panel (a),
while the black solid curve shows a best
fit of error function to the red squares. The
FWHM of 1436 36 fs gives the upper
limit of the temporal resolution.

FIG. 7. Spatial resolution characterization.
(a) Experimental diffraction pattern of
CF3I without laser excitation. (b) Modified
scattering intensity (blue) extracted from
(a) and from simulation (red). (c) The cor-
responding pair distribution functions from
experiment (blue) and simulation (red).
The inset shows a cartoon of the molecu-
lar structure for CF3I without laser excita-
tion. The peaks corresponding to different
bond lengths are labeled.
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distance (or bond length) can be determined by the peak center in the
PDF with an accuracy significantly higher than the spatial resolution,
provided that the distances do not overlap within the spatial resolution.
The blue solid curve in Fig. 7(c) shows the PDF extracted from Fig.
7(a), which agrees well with simulation result shown by the red dotted
curve in Fig. 7(c). The position of the peak corresponding to the C-F
bond length is determined as 1.3446 0.007 Å,51 which agrees with pre-
vious measurements from the literature.56

C. Reciprocal-space resolution

Reciprocal-space resolution quantifies the extent to which fine
features can be unambiguously resolved within a given diffraction pat-
tern. Both the sample property and the electron beam quality contrib-
ute to the reciprocal-space resolution. The diffraction pattern of a
high-quality single crystal gold sample (shown in Fig. 8) was examined
to quantify the upper limit of the instrument reciprocal-space resolu-
tion. Using a Gaussian fit to a single (200) Bragg reflection, it was
determined to be 0.22 Å�1.

IV. APPARATUS STABILITY CHARACTERIZATION
A. Electron beam position pointing stability

The electron beam position pointing jitter of the gas-phase MeV
UED apparatus in the interaction region can be estimated from the jit-
ter of the diffraction pattern centroid position at the electron detector.
The variation in the horizontal (red) and vertical (blue) centroid posi-
tion jitter of CF3I diffraction patterns acquired over a typical 6-h-long
experiment is shown in Fig. 9. The rms centroid jitters in both direc-
tions by 0.42 pixel, which corresponds to 14lm at the detector. This
measurement can also be used as an upper limit of the rms electron
beam pointing jitter at the interaction point, which is 3.2 m upstream
of the detector. Given the micrometer-level pump laser position point-
ing jitter,46 the pump-probe spatial overlap was well maintained within
the experiment.

B. Pump-probe time-zero stability

Long-term time-zero stability is a key to the success gas phase dif-
fraction experiments, given the diffuse nature of the signal and, there-
fore, long integration times. The pump-probe time-zero of a UGED
experiment can be determined using the plasma lensing method.57,58

To implement this technique, the intensity of the pump laser is
increased to 1.3� 1014 W/cm2 by focusing the laser spot size to 50lm
FWHM. The gas molecules are ionized by the pump laser and produce
a plasma. In this plasma, electrons with excess kinetic energy diffuse
rapidly, while the ions, which are much heavier than the electrons,
remain stationary on a picosecond time scale. This results in a net
charge redistribution within the plasma and generation of an intense
electric field along the direction of the laser polarization. When an
electron beam traverses the plasma, a fraction of its charge is deflected
by the electric field, causing the streak-like features shown in the beam
profiles in the bottom of Fig. 10(a). The plasma lensing effect can be
quantified by measuring the intensity of deflected electrons in the elec-
tron beam profile as a function of pump-probe time delay, shown in
Fig. 10(b). Without devolution of the underlying plasma dynamics
and the instrumental response, time-zero can be estimated by fitting
this trace to an error function. Given its short acquisition time (1min),
the plasma lensing technique was used to monitor the long-term time-
zero stability. As shown in Fig. 10(c), the time-zero stability was dem-
onstrated as 21.5 fs rms over one hour.

V. CONCLUSION AND OUTLOOK

A gas-phase MeV UED apparatus has been experimentally dem-
onstrated with excellent performance for the study of photoinduced
structural dynamics in gas-phase reactions. The gas-phase MeV UED
apparatus delivers electron beams at the kinetic energy of 3.7MeV
with 2 fC charge per pulse at a repetition rate of 180Hz. The successful
UED study of the ultrafast dissociation dynamics of CF3I demonstrates
the machine’s unprecedented stability and performance, capturing C-I
bond cleavage with 65 fs rms (150 fs FWHM) temporal resolution and
0.22 Å�1 and 0.63 Å reciprocal-spatial and spatial resolutions,
respectively.

Research and development efforts continue to be devoted to fur-
ther improving the gas-phase MeV UED performance. For example, a
THz-driven electron pulse compression technique has demonstrated a
factor of 3 compression in electron bunch length.59 The magnitude of
compression achieved through this technique could be directly
improved by increasing the input THz pulse energy, paving the way
toward the delivery of sub-10 fs electron bunches to gas-phase MeV
UED experiments. THz streaking has been demonstrated as a direct
characterization tool for the time-of-arrival jitter between the electron

FIG. 8. Reciprocal-space resolution char-
acterization. (a) A typical electron diffrac-
tion pattern from a single crystal gold
sample. (b) A zoom-in view of the (200)
Bragg reflection with Gaussian fitted
FWHM of 0.22 Å�1 as the upper limit of
the reciprocal-space resolution.
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and laser beams for gas-phase MeV UED experiments.60 A project to
upgrade the laser and RF system for 1 kHz operation is being carried
out, aiming to significantly improve the data acquisition efficiency to
achieve higher SNR. Furthermore, a direct electron detector is being
developed to enable shot-by-shot readout for implementation of time-
stamping and data resorting tools to enhance the SNR of the gas dif-
fraction data.61
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