49,643 research outputs found
Staphylinidae from Under Bark and at Sap of Trees, a Preliminary Survey of Species Possibly Beneficial to Forestry (Coleoptera)
Two hundred and one species of Staphylinidae known to be found under bark or at sap of trees are listed. The possibility of these insects being important elements in the population dynamics of forest pests is discussed. An indication is given of the distribution and habitat of each species
Hydrologic significance of lineaments in central Tennessee
There are no author-identified significant results in this report
A theory of post-stall transients in multistage axial compression systems
A theory is presented for post stall transients in multistage axial compressors. The theory leads to a set of coupled first-order ordinary differential equations capable of describing the growth and possible decay of a rotating-stall cell during a compressor mass-flow transient. These changing flow features are shown to have a significant effect on the instantaneous compressor pumping characteristic during unsteady operation, and henace on the overall system behavior. It is also found from the theory that the ultimate mode of system response, stable rotating stall or surge, depends not only on the B parameter but also on other parameters, such as the compressor length-to-diameter ratio. Small values of this latter quantity tend to favor the occurrence of surge, as do large values of B. A limited parametric study is carried out to show the impact of the different system features on transient behavior. Based on analytical and numerical results, several specific topics are suggested for future research on post-stall transients
External stress-corrosion cracking of a 1.22-m-diameter type 316 stainless steel air valve
An investigation was conducted to determine the cause of the failure of a massive AISI Type 316 stainless steel valve which controlled combustion air to a jet engine test facility. Several through-the-wall cracks were present near welded joints in the valve skirt. The valve had been in outdoor service for 18 years. Samples were taken in the cracked regions for metallographic and chemical analyses. Insulating material and sources of water mist in the vicinity of the failed valve were analyzed for chlorides. A scanning electron microscope was used to determine whether foreign elements were present in a crack. On the basis of the information generated, the failure was characterized as external stress-corrosion cracking. The cracking resulted from a combination of residual tensile stress from welding and the presence of aqueous chlorides. Recommended countermeasures are included
Small quantity production of complex chromium alloy sheet /Cr-7Mo-2Ta-0.09C-0.1Y/ Final report
Fabrication of Cr-Mo-Ta-C-Y alloy shee
Comment on "Evidence for the Droplet/Scaling Picture of Spin Glasses"
In a recent letter Moore et al. claim to exhibit evidence for a
non-mean-field behavior of the Ising spin glass. We show that their claim
is insubstantial, and by analyzing in detail the behavior of the
Migdal-Kadanoff approximation (MKA) as compared to the behavior of the
Edwards-Anderson (EA) spin glass we find further evidence of a mean-field like
behavior of the spin glass.Comment: 1 page comment including one postscript figur
Parallel Metric Tree Embedding based on an Algebraic View on Moore-Bellman-Ford
A \emph{metric tree embedding} of expected \emph{stretch~}
maps a weighted -node graph to a weighted tree with such that, for all ,
and
. Such embeddings are highly useful for designing
fast approximation algorithms, as many hard problems are easy to solve on tree
instances. However, to date the best parallel -depth algorithm that achieves an asymptotically optimal expected stretch of
requires
work and a metric as input.
In this paper, we show how to achieve the same guarantees using
depth and
work, where and is an arbitrarily small constant.
Moreover, one may further reduce the work to at the expense of increasing the expected stretch to
.
Our main tool in deriving these parallel algorithms is an algebraic
characterization of a generalization of the classic Moore-Bellman-Ford
algorithm. We consider this framework, which subsumes a variety of previous
"Moore-Bellman-Ford-like" algorithms, to be of independent interest and discuss
it in depth. In our tree embedding algorithm, we leverage it for providing
efficient query access to an approximate metric that allows sampling the tree
using depth and work.
We illustrate the generality and versatility of our techniques by various
examples and a number of additional results
RTCC requirements for mission G - Trajectory computers for TLI and MCC processors, part 1 Final report
Functional properties of trajectory computers for translunar injection and midcourse correction procedures on lunar orbit
Oxygen diffusion and reactivity at low temperature on bare amorphous olivine-type silicate
The mobility of O atoms at very low temperatures is not generally taken into
account, despite O diffusion would add to a series of processes leading to the
observed rich molecular diversity in space. We present a study of the mobility
and reactivity of O atoms on an amorphous silicate surface. Our results are in
the form of RAIRS and temperature-programmed desorption spectra of O2 and O3
produced via two pathways: O + O and O2 + O, investigated in a submonolayer
regime and in the range of temperature between 6.5 and 30 K. All the
experiments show that ozone is formed efficiently on silicate at any surface
temperature between 6.5 and 30 K. The derived upper limit for the activation
barriers of O + O and O2 + O reactions is 150 K/kb. Ozone formation at low
temperatures indicates that fast diffusion of O atoms is at play even at 6.5 K.
Through a series of rate equations included in our model, we also address the
reaction mechanisms and show that neither the Eley Rideal nor the Hot atom
mechanisms alone can explain the experimental values. The rate of diffusion of
O atoms, based on modeling results, is much higher than the one generally
expected, and the diffusive process proceeds via the Langmuir-Hinshelwood
mechanism enhanced by tunnelling. In fact, quantum effects turn out to be a key
factor that cannot be neglected in our simulations. Astrophysically, efficient
O3 formation on interstellar dust grains would imply the presence of huge
reservoirs of oxygen atoms. Since O3 is a reservoir of elementary oxygen, and
also of OH via its hydrogenation, it could explain the observed concomitance of
CO2 and H2O in the ices.Comment: 28 pages, 14 figure
- …