173 research outputs found
G6PD deficiency in male individuals infected by Plasmodium vivax malaria in the Brazilian Amazon: a cost study
BACKGROUND: Deficiency of the enzyme G6PD (G6PDd) is caused by mutations in the gene G6PD, which plays an important role in protecting the red blood cell against oxidizing agents; it is linked to chromosome X, and it may affects both sexes. The clinically relevant manifestations, such as acute haemolytic anaemia, mainly occur in men, however. The 8-aminoquinoline primaquine, which is the medication used in the radical treatment of malaria caused by Plasmodium vivax, represents the main factor that triggers complications associated with G6PDd. The current study aims to estimate the costs of G6PDd among male individuals infected by P. vivax in the Brazilian Amazon. METHODS: This is an economic analysis developed within the Brazilian National Health System perspective for the years of 2009, 2010 and 2011. Direct medical and non-medical costs were estimated for G6PDd in the Brazilian Amazon, considering among those suffering from the deficiency the costs of diagnosing infection by P. vivax, its treatment and severe adverse events that require hospitalization and were connected to the use of primaquine. RESULTS: The estimates of the average costs of diagnosing vivax malaria, of its treatment and of severe adverse events after using primaquine among the carriers of G6PDd, over the three evaluated years, corresponded to US 2,120.04 and US 5,599,639.33, varying in accordance with the sensitivity analysis between US 6,702,619.24. CONCLUSION: The results indicate that the use of primaquine among men with G6PDd who are infected by P. vivax represents a heavy burden on the public health service of Brazil. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12936-015-0647-x) contains supplementary material, which is available to authorized users
Role of macrophage sialoadhesin in host defense against the sialylated pathogen group B <em>Streptococcus</em>
ABSTRACT: Several bacterial pathogens decorate their surfaces with sialic acid (Sia) residues within cell wall components or capsular exopolysaccharides. Sialic acid expression can promote bacterial virulence by blocking complement activation or by engagement of inhibitory sialic acid-binding immunoglobulin-like lectins (Siglecs) on host leukocytes. Expressed at high levels on splenic and lymph node macrophages, sialoadhesin (Sn) is a unique Siglec with an elongated structure that lacks intracellular signaling motifs. Sialoadhesin allows macrophage to engage certain sialylated pathogens and stimulate inflammatory responses, but the in vivo significance of sialoadhesin in infection has not been shown. We demonstrate that macrophages phagocytose the sialylated pathogen group B Streptococcus (GBS) and increase bactericidal activity via sialoadhesin-sialic-acid-mediated recognition. Sialoadhesin expression on marginal zone metallophillic macrophages in the spleen trapped circulating GBS and restricted the spread of the GBS to distant organs, reducing mortality. Specific IgM antibody responses to GBS challenge were also impaired in sialoadhesin-deficient mice. Thus, sialoadhesin represents a key bridge to orchestrate innate and adaptive immune defenses against invasive sialylated bacterial pathogens. KEY MESSAGE: Sialoadhesin is critical for macrophages to phagocytose and clear GBS. Increased GBS organ dissemination in the sialoadhesin-deficient mice. Reduced anti-GBS IgM production in the sialoadhesin-deficient mice. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00109-014-1157-y) contains supplementary material, which is available to authorized users
Pb(II) Induces Scramblase Activation and Ceramide-Domain Generation in Red Blood Cells
The mechanisms of Pb(II) toxicity have been studied in human red blood cells using confocal microscopy, immunolabeling, fluorescence-activated cell sorting and atomic force microscopy. The process follows a sequence of events, starting with calcium entry, followed by potassium release, morphological change, generation of ceramide, lipid flip-flop and finally cell lysis. Clotrimazole blocks potassium channels and the whole process is inhibited. Immunolabeling reveals the generation of ceramide-enriched domains linked to a cell morphological change, while the use of a neutral sphingomyelinase inhibitor greatly delays the process after the morphological change, and lipid flip-flop is significantly reduced. These facts point to three major checkpoints in the process: first the upstream exchange of calcium and potassium, then ceramide domain formation, and finally the downstream scramblase activation necessary for cell lysis. In addition, partial non-cytotoxic cholesterol depletion of red blood cells accelerates the process as the morphological change occurs faster. Cholesterol could have a role in modulating the properties of the ceramide-enriched domains. This work is relevant in the context of cell death, heavy metal toxicity and sphingolipid signaling.AGA was a predoctoral student supported by the Basque Government and later by the University of the Basque Country (UPV/EHU). This work was also supported in part by grants from the Spanish Government (FEDER/MINECO BFU 2015-66306-P to F.M.G. and A.A.) and the Basque Government (IT849-13 to F.M.G. and IT838-13 to A.A.), and by the Swiss National Science Foundation
CD24 Is Not Required for Tumor Initiation and Growth in Murine Breast and Prostate Cancer Models
CD24 is a small, heavily glycosylated, GPI-linked membrane protein, whose expression has been associated with the tumorigenesis and progression of several types of cancer. Here, we studied the expression of CD24 in tumors of MMTV-PyMT, Apc1572/T+ and TRAMP genetic mouse models that spontaneously develop mammary or prostate carcinoma, respectively. We found that CD24 is expressed during tumor development in all three models. In MMTV-PyMT and Apc1572T/+ breast tumors, CD24 was strongly but heterogeneously expressed during early tumorigenesis, but decreased in more advanced stages, and accordingly was increased in poorly differentiated lesions compared with well differentiated lesions. In prostate tumors developing in TRAMP mice, CD24 expression was strong within hyperplastic lesions in comparison with non-hyperplastic regions, and heterogeneous CD24 expression was maintained in advanced prostate carcinomas. To investigate whether CD24 plays a functional role in tumorigenesis in these models, we crossed CD24 deficient mice with MMTV-PyMT, Apc1572T/+ and TRAMP mice, and assessed the influence of CD24 deficiency on tumor onset and tumor burden. We found that mice negative or positive for CD24 did not significantly differ in terms of tumor initiation and burden in the genetic tumor models tested, with the exception of Apc1572T/+ mice, in which lack of CD24 reduced the mammary tumor burden slightly but significantly. Together, our data suggest that while CD24 is distinctively expressed during the early development of murine mammary and prostate tumors, it is not essential for the formation of tumors developing in MMTV-PyMT, Apc1572T/+ and TRAMP mice
Severe hemolysis during primaquine radical cure of Plasmodium vivax malaria: two systematic reviews and individual patient data descriptive analyses
Severe hemolysis during primaquine radical cure of Plasmodium vivax malaria: two systematic reviews and individual patient data descriptive analyses
Primaquine (PQ) kills Plasmodium vivax hypnozoites but can cause severe hemolysis in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. We conducted two systematic reviews. The first used data from clinical trials to determine the variety of definitions and frequency of hematological serious adverse events (SAEs) related to PQ treatment of vivax malaria. The second used data from prospective studies and case reports to describe the clinical presentation, management, and outcome of severe PQ-associated hemolysis necessitating hospitalization. In the first review, SAEs were reported in 70 of 249 clinical trials. There were 34 hematological SAEs among 9,824 patients with P. vivax malaria treated with PQ, nine of which necessitated hospitalization or blood transfusion. Criteria used to define SAEs were diverse. In the second review, 21 of 8,487 articles screened reported 163 patients hospitalized after PQ radical cure; 79.9% of whom (123 of 154) were prescribed PQ at ≥ 0.5 mg/kg/day. Overall, 101 patients were categorized as having probable or possible severe PQ-associated hemolysis, 96.8% of whom were G6PD deficient (< 30% activity). The first symptoms of hemolysis were reported primarily on day 2 or 3 (45.5%), and all patients were hospitalized within 7 days of PQ commencement. A total of 57.9% of patients (77 of 133) had blood transfusion. Seven patients (6.9%) with probable or possible hemolysis died. Even when G6PD testing is available, enhanced monitoring for hemolysis is warranted after PQ treatment. Clinical review within the first 5 days of treatment may facilitate early detection and management of hemolysis. More robust definitions of severe PQ-associated hemolysis are required
Echinococcus granulosus Antigen B Structure: Subunit Composition and Oligomeric States
Antigen B (AgB) is the major secretory protein of the Echinococcus granulosus hydatid cyst, the causative agent of cystic hydatid disease. Structurally, AgB is a multisubunit protein formed by 8-kDa subunits, but it is not known which subunits are secreted by a single parasite (cyst) and how they interact in the formation of distinct AgB oligomeric states. Here, we investigated AgB subunit composition and oligomeric states in individual samples from bovine and human cysts. We identified AgB8/1, AgB8/2, AgB8/3 and AgB8/4 subunits in AgB oligomers of all samples analyzed. Quantitative and qualitative differences in the expression of AgB subunits were observed within and between samples. Using recombinant subunits as models, we showed that AgB subunits form distinct oligomeric states, with a rAgB8/3>rAgB8/2>rAgB8/1 maximum size relation. We also demonstrated by different experimental approaches that rAgB8/3 oligomers are more similar, both in size and morphology, to those observed for E. granulosus AgB. Overall, we provided experimental evidences that AgB is composed of different subunits within a single cyst, and that subunits have different abundances and oligomerization properties. These issues are important for the understanding of AgB expression and structure variations, and their impact for the host-parasite cross-talk
In vitro chloroquine resistance for Plasmodium vivax isolates from the Western Brazilian Amazon
Relationship between birth weight and overweight/obesity among students in Florianópolis, Santa Catarina, Brazil: a retrospective cohort study
- …
