1,561 research outputs found

    Quel est le coût énergétique de notre alimentation ? : club Energie, Prospectives et Débats. Groupe 1 (Rapport CIRAD-AMIS n° 33/2000)

    Full text link
    Le résumé de l'auteur fait l'objet d'un document complémentaire de 11 p

    Characterization of the Intra-Unit-Cell magnetic order in Bi2Sr2CaCu2O8+d

    Full text link
    As in YBa2Cu3O6+x and HgBa2CuO8+d, the pseudo-gap state in Bi2Sr2CaCu2O8+d is characterized by the existence of an intra-unit-cell magnetic order revealed by polarized neutron scattering technique. We report here a supplementary set of polarized neutron scattering measurements for which the direction of the magnetic moment is determined and the magnetic intensity is calibrated in absolute units. The new data allow a close comparison between bilayer systems YBa2Cu3O6+x and Bi2Sr2CaCu2O8+d and rise important questions concerning the range of the magnetic correlations and the role of disorder around optimal doping.Comment: 12 pages, 8 figures, submitted to physical review

    The NILE Project — Advances in the Conversion of Lignocellulosic Materials into Ethanol

    No full text
    NILE ("New Improvements for Lignocellulosic Ethanol") was an integrated European project (2005-2010) devoted to the conversion of lignocellulosic raw materials to ethanol. The main objectives were to design novel enzymes suitable for the hydrolysis of cellulose to glucose and new yeast strains able to efficiently converting all the sugars present in lignocellulose into ethanol. The project also included testing these new developments in an integrated pilot plant and evaluating the environmental and socio-economic impacts of implementing lignocellulosic ethanol on a large scale. Two model raw materials – spruce and wheat straw – both preconditioned with similar pretreatments, were used. Several approaches were explored to improve the saccharification of these pretreated raw materials such as searching for new efficient enzymes and enzyme engineering. Various genetic engineering methods were applied to obtain stable xylose- and arabinose-fermenting Saccharomyces cerevisiae strains that tolerate the toxic compounds present in lignocellulosic hydrolysates. The pilot plant was able to treat 2 tons of dry matter per day, and hydrolysis and fermentation could be run successively or simultaneously. A global model integrating the supply chain was used to assess the performance of lignocellulosic ethanol from an economical and environmental perspective. It was found that directed evolution of a specific enzyme of the cellulolytic cocktail produced by the industrial fungus, Trichoderma reesei, and modification of the composition of this cocktail led to improvements of the enzymatic hydrolysis of pretreated raw material. These results, however, were difficult to reproduce at a large scale. A substantial increase in the ethanol conversion yield and in specific ethanol productivity was obtained through a combination of metabolic engineering of yeast strains and fermentation process development. Pilot trials confirmed the good behaviour of the yeast strains in industrial conditions as well as the suitability of lignin residues as fuels. The ethanol cost and the greenhouse gas emissions were highly dependent on the supply chain but the best performing supply chains showed environmental and economic benefits. From a global standpoint, the results showed the necessity for an optimal integration of the process to co-develop all the steps of the process and to test the improvements in a flexible pilot plant, thus allowing the comparison of various configurations and their economic and environmental impacts to be determined. <br> Le projet NILE, acronyme de "New Improvements for Lignocellulosic Ethanol", était un projet européen (2005-2010) consacré à la conversion des matières premières lignocellulosiques en éthanol. Ses principaux objectifs étaient de concevoir de nouvelles enzymes adaptées à l’hydrolyse de la cellulose en glucose et de nouvelles souches de levure capables de convertir efficacement tous les sucres présents dans la lignocellulose en éthanol. Une autre partie du projet consistait à tester ces nouveaux systèmes dans une installation pilote et à évaluer les impacts environnementaux et socio-économiques de la production et utilisation à grande échelle d’éthanol lignocellulosique. Deux matières premières modèles (l’épicéa et la paille de blé) prétraitées de façon semblable, ont été étudiées. Différentes approches ont été tentées pour améliorer la saccharification de ces matières premières, par exemple, la recherche de nouvelles enzymes efficaces ou l’ingénierie d’enzymes. Plusieurs stratégies d’ingénierie génétique ont été utilisées pour obtenir des souches stables de Saccharomyces cerevisiae capables de fermenter le xylose et l’arabinose, et de tolérer les composés toxiques présents dans les hydrolysats lignocellulosiques. L’installation pilote pouvait traiter 2 tonnes de matières sèches par jour, et l’hydrolyse et la fermentation pouvaient être menées successivement ou simultanément. Un modèle global intégrant la chaîne d’approvisionnement en matière première a servi à évaluer les performances économiques et environnementales de la production d’éthanol lignocellulosique. L’évolution dirigée d’une enzyme du cocktail cellulolytique produit par le champignon Trichoderma reesei, et la modification de la composition de ce cocktail améliorent l’hydrolyse enzymatique des matières premières prétraitées. Cependant, ces résultats n’ont pu être reproduits à grande échelle. Le rendement de conversion et la productivité spécifique en éthanol ont été sensiblement augmentés grâce à l’ingénierie métabolique des souches de levure et au développement d’un procédé optimal de fermentation. Les essais en pilote ont confirmé le bon comportement de ces souches de levure en conditions industrielles ainsi que la possibilité d’utiliser les résidus riches en lignine comme combustible. Le coût de production de l’éthanol et le bilan des émissions de gaz à effet de serre étaient très dépendants des sources d’énergie utilisées. D’un point de vue plus global, les résultats ont montré que l’optimisation du procédé nécessite de codévelopper toutes les étapes de façon intégrée et de valider les améliorations dans une installation pilote, afin notamment de pouvoir comparer différentes configurations et d’en déterminer les effets sur l’économie du procédé et ses impacts environnementaux

    Phase Properties of Laser High-Order Harmonics Generated on Plasma Mirrors

    Get PDF
    International audienceAs a high-intensity laser-pulse reflects on a plasma mirror, high-order harmonics of the incident frequency can be generated in the reflected beam. We present a numerical study of the phase properties of these individual harmonics, and demonstrate experimentally that they can be coherently controlled through the phase of the driving laser field. The harmonic intrinsic phase, resulting from the generation process, is directly related to the coherent sub-laser-cycle dynamics of plasma electrons, and thus constitutes a new experimental probe of these dynamics

    Cellulase activity mapping of Trichoderma reesei cultivated in sugar mixtures under fed-batch conditions

    Get PDF
    International audienceBackground: On-site cellulase production using locally available lignocellulosic biomass (LCB) is essential for cost-effective production of 2nd-generation biofuels. Cellulolytic enzymes (cellulases and hemicellulases) must be produced in fed-batch mode in order to obtain high productivity and yield. To date, the impact of the sugar composition of LCB hydrolysates on cellulolytic enzyme secretion has not been thoroughly investigated in industrial conditions. Results: The effect of sugar mixtures (glucose, xylose, inducer) on the secretion of cellulolytic enzymes by a glucose-derepressed and cellulase-hyperproducing mutant strain of Trichoderma reesei (strain CL847) was studied using a small-scale protocol representative of the industrial conditions. Since production of cellulolytic enzymes is inducible by either lactose or cellobiose, two parallel mixture designs were performed separately. No significant difference between inducers was observed on cellulase secretion performance, probably because a common induction mechanism occurred under carbon flux limitation. The characteristics of the enzymatic cocktails did not correlate with productivity, but instead were rather dependent on the substrate composition. Increasing xylose content in the feed had the strongest impact. It decreased by 2-fold cellulase, endoglucanase, and cellobiohydrolase activities and by 4-fold β-glucosidase activity. In contrast, xylanase activity was increased 6-fold. Accordingly, simultaneous high β-glucosidase and xylanase activities in the enzymatic cocktails seemed to be incompatible. The variations in enzymatic activity were modelled and validated with four fed-batch cultures performed in bioreactors. The overall enzyme production was maintained at its highest level when substituting up to 75% of the inducer with non-inducing sugars. Conclusions: The sugar substrate composition strongly influenced the composition of the cellulolytic cocktail secreted by T. reesei in fed-batch mode. Modelling can be used to predict cellulolytic activity based on the sugar composition of the culture-feeding solution, or to fine tune the substrate composition in order to produce a desired enzymatic cocktail

    Effect of tcdR Mutation on Sporulation in the Epidemic Clostridium difficile Strain R20291

    Get PDF
    Citation: Girinathan, B. P., Monot, M., Boyle, D., McAllister, K. N., Sorg, J. A., Dupuy, B., & Govind, R. (2017). Effect of tcdR Mutation on Sporulation in the Epidemic Clostridium difficile Strain R20291. Msphere, 2(1), 14. doi:10.1128/mSphere.00383-16Clostridium difficile is an important nosocomial pathogen and the leading cause of hospital-acquired diarrhea. Antibiotic use is the primary risk factor for the development of C. difficile-associated disease because it disrupts normally protective gut flora and enables C. difficile to colonize the colon. C. difficile damages host tissue by secreting toxins and disseminates by forming spores. The toxin-encoding genes, tcdA and tcdB, are part of a pathogenicity locus, which also includes the tcdR gene that codes for TcdR, an alternate sigma factor that initiates transcription of tcdA and tcdB genes. We created a tcdR mutant in epidemic-type C. difficile strain R20291 in an attempt to identify the global role of tcdR. A site-directed mutation in tcdR affected both toxin production and sporulation in C. difficile R20291. Spores of the tcdR mutant were more heat sensitive than the wild type (WT). Nearly 3-fold more taurocholate was needed to germinate spores from the tcdR mutant than to germinate the spores prepared from the WT strain. Transmission electron microscopic analysis of the spores also revealed a weakly assembled exosporium on the tcdR mutant spores. Accordingly, comparative transcriptome analysis showed many differentially expressed sporulation genes in the tcdR mutant compared to the WT strain. These data suggest that regulatory networks of toxin production and sporulation in C. difficile strain R20291 are linked with each other. IMPORTANCE C. difficile infects thousands of hospitalized patients every year, causing significant morbidity and mortality. C. difficile spores play a pivotal role in the transmission of the pathogen in the hospital environment. During infection, the spores germinate, and the vegetative bacterial cells produce toxins that damage host tissue. Thus, sporulation and toxin production are two important traits of C. difficile. In this study, we showed that a mutation in tcdR, the toxin gene regulator, affects both toxin production and sporulation in epidemic-type C. difficile strain R20291

    Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile.

    Get PDF
    International audienceThe catabolite control protein CcpA is a pleiotropic regulator that mediates the global transcriptional response to rapidly catabolizable carbohydrates, like glucose in Gram-positive bacteria. By whole transcriptome analyses, we characterized glucose-dependent and CcpA-dependent gene regulation in Clostridium difficile. About 18% of all C. difficile genes are regulated by glucose, for which 50% depend on CcpA for regulation. The CcpA regulon comprises genes involved in sugar uptake, fermentation and amino acids metabolism, confirming the role of CcpA as a link between carbon and nitrogen pathways. Using combination of chromatin immunoprecipitation and genome sequence analysis, we detected 55 CcpA binding sites corresponding to ∼140 genes directly controlled by CcpA. We defined the C. difficile CcpA consensus binding site (cre(CD) motif), that is, 'RRGAAAANGTTTTCWW'. Binding of purified CcpA protein to 19 target cre(CD) sites was demonstrated by electrophoretic mobility shift assay. CcpA also directly represses key factors in early steps of sporulation (Spo0A and SigF). Furthermore, the C. difficile toxin genes (tcdA and tcdB) and their regulators (tcdR and tcdC) are direct CcpA targets. Finally, CcpA controls a complex and extended regulatory network through the modulation of a large set of regulators
    corecore