18,590 research outputs found

    Arbitrary distribution and nonlinear modal interaction in coupled nanomechanical resonators

    Full text link
    We propose a general one-dimensional {\em continuous} formulation to analyze the vibrational modes of antenna-like nanomechanical resonators consisting of two symmetric arrays of cantilevers affixed to a central nano-beam. The cantilever arrays can have arbitrary density and length profile along the beam. We obtain the secular equation that allows for the determination of their frequency spectrum and illustrate the results on the particular examples of structures with constant or alternating cantilever length profiles. We show that our analytical results capture the vibration spectrum of such resonators and elucidate key relationships that could prove advantageous for experimental device performance. Furthermore, using a perturbative approach to treat the nonlinear and dissipative dynamics of driven structures, we analyze the anharmonic coupling between two specific widely spaced modes of the coupled-element device, with direct application to experiments.Comment: 8 pages, 5 figures, additional info can be found at http://nano.bu.ed

    On a transition from solar-like coronae to rotation-dominated jovian-like magnetospheres in ultracool main-sequence stars

    Full text link
    For main-sequence stars beyond spectral type M5 the characteristics of magnetic activity common to warmer solar-like stars change into the brown-dwarf domain: the surface magnetic field becomes more dipolar and the evolution of the field patterns slows, the photospheric plasma is increasingly neutral and decoupled from the magnetic field, chromospheric and coronal emissions weaken markedly, and the efficiency of rotational braking rapidly decreases. Yet, radio emission persists, and has been argued to be dominated by electron-cyclotron maser emission instead of the gyrosynchrotron emission from warmer stars. These properties may signal a transition in the stellar extended atmosphere. Stars warmer than about M5 have a solar-like corona and wind-sustained heliosphere in which the atmospheric activity is powered by convective motions that move the magnetic field. Stars cooler than early-L, in contrast, may have a jovian-like rotation-dominated magnetosphere powered by the star's rotation in a scaled-up analog of the magnetospheres of Jupiter and Saturn. A dimensional scaling relationship for rotation-dominated magnetospheres by Fan et al. (1982) is consistent with this hypothesis

    Imprint of spatial curvature on inflation power spectrum

    Get PDF
    If the universe had a large curvature before inflation there is a deviation from the scale invariant perturbations of the inflaton at the beginning of inflation. This may have some effect on the CMB anisotropy at large angular scales. We calculate the density perturbations for both open and closed universe cases using the Bunch-Davies vacuum condition on the initial state. We use our power spectrum to calculate the temperature anisotropy spectrum and compare the results with the WMAP three year data. We find that our power spectrum gives a lower quadrupole anisotropy when Ω−1>0\Omega-1 >0, but matches the temperature anisotropy calculated from the standard Ratra-Peebles power spectrum at large ll. The determination of spatial curvature from temperature anisotropy data is not much affected by the different power spectra which arise from the choice of different boundary conditions for the inflaton perturbation.Comment: 17 pages, 4 figures, revtex4; section on comparison with WMAP3 data adde

    Effect of UV Radiation on the Spectral Fingerprints of Earth-like Planets Orbiting M dwarfs

    Get PDF
    We model the atmospheres and spectra of Earth-like planets orbiting the entire grid of M dwarfs for active and inactive stellar models with TeffT_{eff} = 2300K to TeffT_{eff} = 3800K and for six observed MUSCLES M dwarfs with UV radiation data. We set the Earth-like planets at the 1AU equivalent distance and show spectra from the VIS to IR (0.4μ\mum - 20μ\mum) to compare detectability of features in different wavelength ranges with JWST and other future ground- and spaced-based missions to characterize exo-Earths. We focus on the effect of UV activity levels on detectable atmospheric features that indicate habitability on Earth, namely: H2_2O, O3_3, CH4_4, N2_2O and CH3_3Cl. To observe signatures of life - O2_2/O3_3 in combination with reducing species like CH4_4, we find that early and active M dwarfs are the best targets of the M star grid for future telescopes. The O2_2 spectral feature at 0.76μ\mum is increasingly difficult to detect in reflected light of later M dwarfs due to low stellar flux in that wavelength region. N2_2O, another biosignature detectable in the IR, builds up to observable concentrations in our planetary models around M dwarfs with low UV flux. CH3_3Cl could become detectable, depending on the depth of the overlapping N2_2O feature. We present a spectral database of Earth-like planets around cool stars for directly imaged planets as a framework for interpreting future lightcurves, direct imaging, and secondary eclipse measurements of the atmospheres of terrestrial planets in the HZ to design and assess future telescope capabilities.Comment: in press, ApJ (submitted August 18, 2014), 16 pages, 12 figure

    Low Temperature Fatigue Crack Growth Test and Life Estimation of 7475-T7351 Al-ally by ANN

    Full text link
    In the present wok fatigue crack growth tests have been performed under interspersed mode-I overload on 7475-T7351 Al-alloy. The overloads with an overload ratio of 2 were given at 0C, ndash;30C, ndash;45C, ndash;60C, and ndash;75C at a loading rate of 7 KN/min after the crack had grown to a/w ratio of 0.4. The crack growth tests have been continued in mode-I at a frequency of 5 Hz and load ratio (R) of 0.1 till fracture. From the fatigue tests it has been observed that the crack growth rate decreases and consequently fatigue life increases as the overload temperature decreases. The experimental data generated have been subsequently used to formulate the ANN model to predict the fatigue crack growth rates and the fatigue life of 7475-T7351 Al-alloy. It has been observed that the proposed model predicts the fatigue life with reasonable accuracy having + 0.919% deviation from experimental results

    Elliptic flow of thermal dileptons as a probe of QCD matter

    Full text link
    We study the variation of elliptic flow of thermal dileptons with transverse momentum and invariant mass of the pairs for Pb+Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV. The dilepton productions from quark gluon plasma (QGP) and hot hadrons have been considered including the spectral change of light vector mesons in the thermal bath. The space time evolution has been carried out within the frame work of 2+1 dimensional ideal hydrodynamics with lattice+hadron resonance gas equation of state. We find that a judicious selection of invariant mass(M) and transverse momentum (p_T) windows can be used to extract the collective properties of quark matter, hadronic matter and also get a distinct signature of medium effects on vector mesons. Our results indicate a reduction of elliptic flow (v_2) for M beyond phi mass, which if observed experimentally would give the measure of v_2 of the partonic phase.Comment: To appear in Phys. Rev. C (Rapid Comm.
    • …
    corecore